
A Methodological Approach to Verify
Architecture Resiliency

Joanna C. S. Santos1, Selma Suloglu2, Néstor Cataño2, and Mehdi Mirakhorli2

1 University of Notre Dame, Notre Dame IN 46556, USA
joannacss@nd.edu

2 Rochester Institute of Technology, Rochester NY 14623, USA
{sxsvse,nxccics,mxmvse}@rit.edu

Abstract. Architecture-first approach to address software resiliency is
becoming the mainstream development method for mission-critical and
software-intensive systems. In such approach, resiliency is built into the
system from the ground up, starting with a robust architecture design.
As a result, a flaw in the design of a resilient architecture affects the
system’s ability to anticipate, withstand, recover from, and adapt to ad-
verse conditions, stresses, attacks, or compromises on cyber-resources.
In this paper, we present an architecture-centric reasoning and verifica-
tion methodology for detecting design weaknesses in resilient systems.
Our goal is to assist software architects in building sound architectural
models of their systems. We showcase our approach with the aid of an
Autonomous Robot modeled in AADL, in which we use our methodol-
ogy to uncover three architectural weaknesses in the adoption of three
architectural tactics.

Keywords: Cyber resiliency · Architecture Analysis and Design Lan-
guage · AADL · Architecture Tactics

1 Introduction

Cyber-resiliency refers to a system’s ability to anticipate potential compromises,
to continue operating even under attacks (to withstand), to restore its opera-
tion in the face of attacks (to recover), and to adapt its behavior to minimize
any compromises (to evolve) [5]. Achieving cyber-resiliency goals, therefore, in-
volves designing a software system that addresses multiple quality attributes,
such as performance, security, safety, or evolvability. Under these circumstances,
the architecture-first development method [7] is becoming the mainstream ap-
proach for addressing cyber resiliency concerns in mission-critical and software-
intensive systems [10,14]. Since the system’s architecture design plays a crucial
role in the software development process, weaknesses in the software system’s
architecture can have a greater impact on the system’s ability to anticipate,
withstand, recover from, and adapt to adverse conditions, stresses, attacks, or
compromises on cyber resources.

Despite the importance of the architecture-first approach to enhance and en-
sure the resiliency of mission-critical systems, current research in the field focuses

2 J. C. S. Santos et al.

on the verification of requirements, functional or non-functional (e.g., safety, or
security) of the system [31,16,1], and neglects an in-depth analysis of architec-
tural weaknesses in the system’s design. Some existing approaches for creat-
ing architectural models comply with domain-specific requirements (e.g., avion-
ics) [27,31,20,6], or with the creation of reusable modeling components [17,16].
However, cyber-resiliency involves multiple quality attributes (availability, safety,
security, etc.) and can be applied to multiple systems domains. Finally, the cur-
rent state of practice requires systems engineers to have an in-depth understand-
ing of potential mistakes associated with the design of resilient systems and use
qualitative techniques to evaluate the design [22]. For instance, the Architecture
Trade-off Analysis Method (ATAM) [22] has been widely used in mission and
safety critical applications as a qualitative approach to risk and trade-off analysis
of an architecture with respect to a set of clearly articulated quality scenarios.
However, such approaches are not able to detect specific design weaknesses in
complex applications with several components and interdependencies.

In this paper, we describe an architecture-centric reasoning and veri-
fication methodology for detecting design weaknesses in resilient systems. It
is a model-driven methodology for aiding software architects to systematically
analyze and formally verify the resiliency aspects of their architectural designs.
It shifts the architecture evaluation from a primarily qualitative and subjective
approach to an approach that is empowered by formal verification.

Our methodology encompasses four phases. 1© The architecture is modelled
using the Architecture Analysis and Design Language (AADL) [12]. 2© The ar-
chitecture model is enriched with annotations that map AADL components to
elements in resiliency tactics and patterns. These annotations add semantics of
resiliency tactics and patterns to AADL models, allowing reasoning about flaws
associated to a resilient design. 3© A risk assessment is performed to identify
weaknesses that may violate the properties of resiliency tactics in the system. In
this phase, these weaknesses are specified in terms of conceptual models and a set
of formal rules. These rules are written using the Resolute [13] language, which
is application-independent and can be reused to analyze another system mod-
eled in AADL. 4© Finally, these rules are checked against the annotated model to
verify whether the current architecture design is flawed (i.e., it contains architec-
tural weaknesses). We showcase our methodology with the aid of an Autonomous
Robot, for which we model its system architecture using the Architectural Anal-
ysis & Design Language (AADL) [12]. We use Resolute to specify three common
architectural weaknesses to expose flaws in the Autonomous Robot’s design.

The contributions of this paper are three-fold. (i.) a novel methodology for the
verification of architectural resiliency properties of AADL models. (ii.) An ap-
proach to specify common architectural weaknesses as conceptual models which
are converted into reusable rules written in an assurance case language (Reso-
lute), which can be used to detect design weaknesses in various architectures.
We use the Resolute [13] language for pragmatic reasons. This language was ini-
tially developed to model assurance cases, however, we adopt it because of its
power to conduct reachability analysis of AADL models which can be leveraged

A Methodological Approach to Verify Architecture Resiliency 3

to detect various design weaknesses. (iii.) A case study demonstrating the feasi-
bility and practicality of using our methodology to detect common architectural
weaknesses in complex AADL models.
Paper organization. Section 2 introduces concepts for our paper to be under-
stood by a broader audience. Section 3 describes our model-driven methodology.
Section 4 illustrates the methodology in the context of an autonomous robot.
Section 5 discusses related work, whereas Section 6 concludes this paper.

2 Background

This section explains key concepts that are used throughout the paper.

2.1 Architectural Tactics

Software architects typically use a rich set of proven architectural tactics to
design cyber-resilient systems [2]. They provide reusable solutions for addressing
resiliency concerns, even when the system is under attack. They are grouped
under five main categories: detect, resist (withstand), react to, recover from,
and prevent cyber events [2,5,18]. Tactics play an important role in shaping
the high-level design of software since they describe reusable techniques and
concrete solutions for satisfying a wide range of quality concerns [2,15], including
resiliency.

The Software Engineering Institute at Carnegie Mellon University released a
comprehensive catalog of tactics for different quality attributes such as availabil-
ity, security, and reliability [2]. This catalog is collected from existing literature.
Besides, there is an extensive body of work about the importance of architectural
tactics and their role in software quality [2,26].

There are many kinds of resiliency tactics. For example, a system with high
reliability requirements might implement the heartbeat tactic [2,26] to monitor
the availability of a critical component, or the voting tactic [26] to increase fault
tolerance through integrating and processing information from a set of redundant
components. Architectural tactics are pervasive in resilient and fault-tolerant
systems [25,2].

2.2 Common Architectural Weaknesses

Although tactics provide well-formed strategies for a system to satisfy a specific
quality concern, e.g., resist cyberattacks, if they are not carefully adopted in a
system, they can result in architectural weaknesses [19,28]. There is a fundamen-
tal difference between architectural weaknesses and bugs. While the latter are
more code-level, such as buffer overflows caused by miscalculations, the former
are at a higher level and much more subtle and sophisticated [19].

For instance, a system may adopt the Authenticate Actors tactic, but the
authentication enforcement is performed in the client-side instead of the server-
side [28]. In this example, a client/server product performs authentication within

4 J. C. S. Santos et al.

the client code, but not in the server code, allowing the authentication feature
to be bypassed via a modified client which omits the authentication check. This
design decision creates a weakness in the security architecture, which can be
successfully exploited by an intruder with reverse-engineering skills. There are
numerous examples of architectural weaknesses (also referred in the literature
as “design flaws”) [28,21,33,19] that needs to be mitigated at the design time.

2.3 Architecture Modeling and AADL

The Architecture Analysis and Design Language (AADL) [12] is a modeling
language which allows an architecture-centric, and model-based development
approach throughout the system lifecycle. AADL models cover both static and
dynamic system structure in terms of components and their interactions. Com-
ponents are categorized as either application system components or execution
platform components (as shown in Figure 1). Components include a set of fea-
tures, properties, and flows.

Application system components interact with each other via features (one or
more ports or data accesses). Features that are either data and/or event ports
can be an input (in), output (out) or input/output (in/out) port. The interaction
between components in an execution platform is provided by a Bus component
type, which is the counterpart of a feature in the application system components.

Fig. 1: AADL graphical notation

AADL also allows components to be annotated with properties, which define
the characteristics of a component. These properties can be used to perform
various analysis, such as model checking. AADL provides six predefined property
sets but AADL models can also be extended with user-defined property sets.

2.4 Architecture Reasoning on AADL using Resolute

Given that an AADL model provide a formalized presentation of the architec-
ture, we can leverage its semantics to perform reasoning. For this purpose, Res-
olute [13] is a language and a tool to assure the system’s architecture specified in
AADL meet its expectations, which are represented as a set of rules expressed in
a declarative fashion. These rules are written in terms of assurance cases, each

A Methodological Approach to Verify Architecture Resiliency 5

of which presents claims about the system and supporting evidence for them.
These claims describe a quality attribute about the system (e.g., safety cases,
security cases, etc.). The evidence for the claim is automatically extracted from
the model based on the written rules.

For instance, one can claim that the system logs all security-relevant opera-
tions (i.e., it adopts the Maintain Audit Trails tactic [2]). As shown in Listing 1.1,
this can be done by first defining a top-level claim (line 5) that describes using
a first-order predicate how this claim can be proved. This check is implemented
by querying the AADL model to verify that the system has (i) at least one Au-
dit Manager, which is a component that tracks each transaction alongside with
identifying information (line 7); and (ii) at least one Action Target, which is a
component that perform security-critical operations (line 8). This top-level claim
invokes a subclaim (all action targets report operations(s)3 in line 9) to
check whether all Action Targets do send their critical operation information to
the Audit Manager for it to be logged.

1 annex resolute {**
2 has_role (s: aadl , role: string) :
3 bool = (has_property (s, Props :: Role)) and member (role , property (s, Props

:: Role))
4
5 maintain_audit_trails (s: system) <=
6 ** "The system " s " logs security - relevant operations " **
7 exists (comp: component) . has_role (comp , " AuditManager ") and
8 exists (comp: component) . has_role (comp , " ActionTarget ") andthen
9 all_action_targets_report_operations (s)

10
11 -- more subclaims (...)
12 **};

Listing 1.1: Claims in Resolute

3 Architecture-centric Verification Methodology

As shown in Figure 2, the architecture-centric reasoning and verification method-
ology presented in this paper has four phases: 1© An architecture modeling
phase in which the software architect models the architectural design using
AADL. 2© A common architectural weakness modeling and specifica-
tion phase in which the software architect selects a potential architectural flaw
for inspection, draws a conceptual graph of the flaw, and converts it into a set
of reusable rules, which are written in Resolute [13]. They describe the way the
system should withstand to overcome the flaw. 3© A model annotation phase
in which elements in the architectural model are tagged with roles and prop-
erties. A role describes a component’s functionality, whereas a property defines
the characteristics of a component. 4© An architecture verification phase, in
which the architectural elements (components) tagged during the third phase are
checked against the Resolute rules encoded during the second one. The Resolute
tool checks for (the absence of) weaknesses automatically.
3 Due to space constraints, we do not show the definitions for all sub-claims

6 J. C. S. Santos et al.

These four phases are performed repeatedly until the software architecture
achieves the intended level of resiliency. In what follows, we detail each phase.

Architecture
Modeling

Develop AADL
model of the
architecture

AADL Model Annotated AADL Model

Weaknesses’ Conceptual Graphs
& Formal Rules (Resolute)

- Identified Weaknesses
- Satisfied Tactics

…

Model Annotation
Create AADL models
annotated with roles

and properties.

Common Architectural
Weakness Modeling &

Specification
Create a conceptual
graph of common

design flaw.

Architecture Verification
Embed Resolute rules based on

the annotated models and
perform model checking to

detect architectural weaknesses

Version 2 - Modified

31

2 4

Fig. 2: The architecture-centric reasoning and verification methodology

3.1 Architecture Modeling

In this phase, the software architect uses AADL to describe system components,
their interactions, as well as functional and non-functional properties of the soft-
ware system. The software architect can use property sets and the annexes in
AADL to specify behavioural details of the design, define the system’s compo-
nents (e.g., threads, subprograms, etc) or the execution platform components
(e.g., device, memory, etc). For medium to large scale systems, these models are
often non-trivial and may have several elements and inter-dependencies.

3.2 Common Architectural Weakness Modeling & Specification

In the second phase, the architect performs an assessment of potential weak-
nesses, which are captured in Weaknesses Models and Specifications.

Modeling Common Architectural Weaknesses. A weakness model can
be used as a guideline for manual or automated inspection of a system’s archi-
tecture. A weakness model is essentially a reusable conceptual graph centered
around a specific architectural tactic and includes the following elements:

– A set of architectural roles, which represent the functionality assumed by
an architectural element. These roles are modeled as nodes in the conceptual
graph.

– A set of properties that are used to model how the system incorrectly
behaves in the occurrence of a cyber-event. They correspond to the data
flow and the control flow between the conceptual roles in a Weakness Model.
Unlike a data flow, a control flow is a flow that only occur if a condition
is true. These data and control flow are directed edges in the conceptual

A Methodological Approach to Verify Architecture Resiliency 7

graph. Edges have an attribute that specifies the data type flowing between
the nodes. This attribute could be either generic, which means that its data
type is not specified or matches all data types, or typed, which indicates its
actual concrete data type.

Action Target
« Type:
Event »

Audit Manager

Audit Logs

?

(a) Manage Audit Trails
weakness

HERTBEAT TACTIC
Heartbeat

Sender

Fault
Monitor

«Type: heartbeat
message »

Heartbeat
Receiver

« Attribute:
- sending rate »

« Attributes:
- checking rate
- acceptable silence »

? «Type: notification»

sending rate ≪ checking rate

(b) Heartbeat weaknesses

Entry Point

Resource

«Type: Credentials »

Authorizer

Intermediary
0...n

Intermediary
0...n

X

Permissions
Provider

«Type: Permissions »
«Type: User-controlled

data » X

(c) Authorization weaknesses

Fig. 3: Conceptual graphs

Capturing architectural weaknesses as conceptual graphs makes the Weak-
ness Model language-agnostic and reusable. They can be used to guide the
process of detecting architectural weaknesses in systems designs using differ-
ent modeling languages such as AADL, SysML (Systems Modeling Language),
among others. Although the modeling of weaknesses via conceptual graphs can
be skipped, it helps the later development of weaknesses specifications, as it
demonstrates how the flaw can happen.
Weakness Model Examples. Figure 3 contains examples of conceptual graphs for
three weaknesses. Conditional flows, that is, data that only flows if a condition
holds, are modeled as dashed arrows whereas data flows are modeled as full
arrows in these conceptual graphs. Edges have an attribute that specifies the data
type flowing between the nodes. This attribute could be either generic, which
means that its data type is not specified or matches all data types, or typed,
which indicates the actual data type. For instance, in Figure 3c the Entry Point’s
returned data is of credential type and the data flowing from the Permissions
Provider to the Authorizer node is of user-controlled data type (which is the root
cause of the authorization bypass).

In the first example, shown in Figure 3a, it depicts a weakness related to the
“Manage Audit Trails” tactic [2], which can be adopted to log activities in the
system for achieving non-repudiation goals and help with system recovery. In this
tactic, Action Target components, that perform critical operations, report to the
Audit Manager any critical operation being performed alongside with who made
that request (i.e., the actor) such that the manager can record that operation in

8 J. C. S. Santos et al.

Audit Logs. The conceptual graph in Figure 3a shows a weakness when the system
does not record important activities within their logs because an Action Target is
not sending these logs to the Audit Manager to be recorded. This is represented
by a question mark that denotes a missing expected interaction between the
components.

Figure 3b shows a conceptual model for two weaknesses associated with the
“Heartbeat” architectural tactic [2,23], which is used for addressing reliability
and availability goals. This tactic encompasses three roles: a safety-critical Heart-
beat Sender component that periodically sends heartbeat messages to a Heartbeat
Receiver to notify that it is still alive. The Heartbeat Receiver is able to detect
failures in the safety-critical component when it notices that heartbeat messages
are not being received. The Fault Monitor takes action upon detected failures.
A potential weakness to this tactic occurs when the heartbeat checking rate out-
paces the sending rate because the Heartbeat Receiver will mistakenly assume
that the sender failed. A second weakness is caused by not notifying the Fault
Monitor when a failure is detected. Figure 3b shows a conceptual graph modeling
these two weaknesses (represented by an edge indicating the rates mismatches
between the Sender and Receiver as well as a question mark indicating the lack
of notification).

Figure 3c shows two weaknesses when adopting the “Authorize Actors” tac-
tic [2,28]. This tactic enforces actors to hold certain privileges to access any
resource that might require them. This Weakness Model has six distinct roles:
the system’s Entry Point (which is fed with user’s inputs), multiple Intermediary
nodes (any component transferring data), the Authenticator (used to check the
user’s identity), the Authorizer (which verifies the actor’s permissions against the
permissions given by the Permissions Provider), and the Resource node which is
accessible to the user. These two weaknesses result in authorization bypasses.
A path from an Entrypoint to a Resource without going through the Authorizer
component (depicted with a red edge) is the root cause of the first bypass. Rely-
ing on user-controlled data to perform the authorization checks is the root cause
of the second bypass. This second bypass is highlighted with a font colored in
red for the data type provided to the Permissions Provider.

Specifying Common Architectural Weaknesses Formally. Conceptual
graphs are good at depicting the information flow between architectural compo-
nents. However, we need to use a language that allows us to conduct a reachabil-
ity analysis across the system’s components. This is realized as a set of rules in
the Resolute language that describe how the system can withstand flaws (weak-
nesses). This reachability analysis is conducted with the Resolute tool. Creating
the Resolute rules for specifying architectural weaknesses involves three activi-
ties [29]: (1) Writing a custom AADL property set [12] that declares roles,
attributes, and data types; (2) Developing computation functions for check-
ing/querying properties in the AADL model; and (3) Writing claims specifying
the system behavior under certain conditions [13].

A Methodological Approach to Verify Architecture Resiliency 9

Weakness Specification Example. Figure 4a presents an example of property set
definition in Resolute. It introduces role types such as Resource, Entrypoint,
Authorizer, etc. The specification states that components such as “thread”,
“subprogram”, “process”, among others, hold that type. These roles and role
types can be used by software architects to define custom computation functions
with the aid of annexes, as shown in Figure 4b. The has role(s) computation
function returns true if the s AADL component contains the given role. The
get all(role) computation function returns all the AADL components with a
specific role.
property set Props is
 RoleType: type enumeration
 (Resource, Entrypoint, Authorizer, …);
 Role: list of Props::RoleType
 applies to (thread, subprogram, process, system, …);
 DataType: enumeration (Credential, HeartbeatMessage, …)
 applies to (data, data port, event data port, …);
 (…)
end Props;

annex resolute {**
 has_role(s: aadl, role: string):
 bool = has_property(s, Props::role) and
 member(role, property(s, Props::Role))
 get_all(role: string):
 {component} = {y for (x: component)
 (y: x) | has_role(x,role)}
 (…)
**};

(a) Custom property set

property set Props is
 RoleType: type enumeration
 (Resource, Entrypoint, Authorizer, …);
 Role: list of Props::RoleType
 applies to (thread, subprogram, process, system, …);
 DataType: enumeration (Credential, HeartbeatMessage, …)
 applies to (data, data port, event data port, …);
 (…)
end Props;

annex resolute {**
 has_role(s: aadl, role: string):
 bool = has_property(s, Props::role) and
 member(role, property(s, Props::Role))
 get_all(role: string):
 {component} = {y for (x: component)
 (y: x) | has_role(x,role)}
 (…)
**};

(b) Examples of Computation functions

Fig. 4: Specification Rules for an Architectural Weakness

Once a set of computations is declared, the architect proceeds to develop
structured Resolute claims that describe the architecture formally. For instance,
for the conceptual graph in Figure 3b, one can write structured claims as shown
in Figure 5, namely, (i) the system has the three required roles for the tactic
(Sender, Receiver and Monitor), (ii) the safety-critical components send heartbeat
messages to the receivers, (iii) the receivers periodically check whether the safety-
critical component(s) are still functioning, (iv) the receivers notify the fault
monitor upon a failure detection. Due to space constraints, we only show some
high-level claims for enforcing the aforementioned properties.

Side By Side – Property Set + Computations

property set Props is
 RoleType: type enumeration
 (Resource, Entrypoint, Authorizer, …);
 Role: list of Props::RoleType
 applies to (thread, subprogram, process, system, …);
 DataType: enumeration (Credential, HeartbeatMessage, …)
 applies to (data, data port, event data port, …);
 (…)
end Props;

annex resolute {**
 has_role(s: aadl, role: string):
 bool = has_property(s, Props::Role) and
 member(role, property(s, Props::Role))
 get_all(role: string):
 {component} = {y for (x: component)
 (y: x) | has_role(x,role)}
 (…)
**};

Side By Side – Heartbeat Claims/Rules

check_heartbeat(s: system) <=
 ** "The system " s " adopts Heartbeat tactic"
 " to detect faults in critical components" **
 system_has_role(s,"HeartbeatReceiver") and
 system_has_role(s,"HeartbeatSender") and
 system_has_role(s,"FaultMonitor") and
 critical_components_sends_heartbeat(s) andthen
 receivers_checks_periodically(s) andthen
 receivers_notifies_monitors(s)

system_has_role(s: system, role: string) <=
 ** "The system " s " has a " role " component" **
 exists(comp: component) . has_role(comp, role)

critical_components_sends_heartbeat(s: system) <=
 ** " All the senders periodically send a heartbeat" **
 forall (sender : get_all("HeartbeatSender")) .
 exists(receiver : get_all("HeartbeatSender")).
 sends_heartbeat(sender, receiver) and
 property(sender, Props::SendingRate) =
 property(receiver, Props::CheckingRate)

Side by Side – Annotations + Resolute Rules

package AOCS
public
with Props;
with ResoluteRules;
system implementation AOCS.Impl
 subcomponents
 main: process AOCSprocessing.impl;
 (…)
 annex resolute {**
 . prove(check_heartbeat(this))
 **};

end AOCS.Impl;
end AOCS;

package AOCS
public
with Props;
process implementation AOCSprocessing.impl
 subcomponents
 ACF: thread AttitudeControlFunction
 {Props::Role => (Resource);};
 TCP: thread TelecommandProcessing
 {Props::Role => (Authenticator);};
 (…)

end AOCSprocessing.impl;
end AOCS;

Fig. 5: High-level claims for the Heartbeat tactic

3.3 Architectural Model Annotation

In this third phase, the architectural model is annotated with metadata about
resiliency tactics. The metadata created in this phase is crucial to indicate which
components implement resiliency tactics, and express the expected characteris-
tics and behavior of the system. To perform these annotations, the architects first
add an import statement into the system’s AADL file to import the previously
developed files that contain the custom property set, claims and computations.

10 J. C. S. Santos et al.

Then, the elements in the AADL model are annotated with an architectural role
of components, their attributes and data types. Figure 6a shows an example of
an architectural model of an Attitude and Orbit Control System (AOCS) [8],
in which the TCP component is annotated with the Authorizer role to indicate
that it is in charge of checking the privileges of actors interacting with the sys-
tem whereas the ACF component is the target Resource (i.e., the component that
needs to be protected against unauthorized access) [29].

Side by Side – Annotations + Resolute Rules

package AOCS
public
with Props;
with ResoluteRules;
system implementation AOCS.Impl
 subcomponents
 main: process AOCSprocessing.impl;
 (…)
 annex resolute {**
 . prove(system_adopts_heartbeat(this))
 **};
end AOCS.Impl;
end AOCS;

package AOCS
public
with Props;
process implementation AOCSprocessing.impl
 subcomponents
 ACF: thread AttitudeControlFunction
 {Props::Role => (Resource);};
 TCP: thread TelecommandProcessing
 {Props::Role => (Authenticator);};
 (…)
end AOCSprocessing.impl;
end AOCS;

Lunar Robot Annotations

system implementation IntegratedVehicleHealthManagement.impl
 subcomponents
 DataLogger: system DataLogger.impl
 {Props::Role => (AuditManager);};
 SensorSelection: system SensorSelection.impl
 {Props::Role => (HeartbeatReceiver,FaultMonitor);};
end IntegratedVehicleHealthManagement.impl;
system implementation SensorsVirtualMachine.impl
 subcomponents
 Cameras: device Camera{Props::Role => (ActionTarget);};
 GPSReceivers: device GPSReceiver{Props::Role => (ActionTarget);};
 RateGyros: device RateGyros{Props::Role => (ActionTarget);};
end SensorsVirtualMachine.impl;

system implementation LunarRobot.impl
 subcomponents
 SVM: system SensorsVirtualMachine.impl
 {Props::Role => (Resource);};
 CS: system ControlSystem.impl
 {Props::Role => (Resource);};
 IVHM: system IntegratedVehicleHealthManagement.impl
 {Props::Role => (Resource);};
 CommunicationSystem: system CommunicationSystem.impl
 {Props::Role => (Authorizer,Authenticator);};
 AVM: system ActuatorVirtualMachine.impl
 {Props::Role => (Resource);};
end LunarRobot.impl;

(a) An annotated AADL model

Side By Side – Property Set + Computations

property set Props is
 RoleType: type enumeration
 (Resource, Entrypoint, Authorizer, …);
 Role: list of Props::RoleType
 applies to (thread, subprogram, process, system, …);
 DataType: enumeration (Credential, HeartbeatMessage, …)
 applies to (data, data port, event data port, …);
 (…)
end Props;

annex resolute {**
 has_role(s: aadl, role: string):
 bool = has_property(s, Props::Role) and
 member(role, property(s, Props::Role))
 get_all(role: string):
 {component} = {y for (x: component)
 (y: x) | has_role(x,role)}
 (…)
**};

Side By Side – Heartbeat Claims/Rules

check_heartbeat(s: system) <=
 ** "The system " s " adopts Heartbeat tactic"
 " to detect faults in critical components" **
 system_has_role(s,"HeartbeatReceiver") and
 system_has_role(s,"HeartbeatSender") and
 system_has_role(s,"FaultMonitor") and
 critical_components_sends_heartbeat(s) andthen
 receivers_checks_periodically(s) andthen
 receivers_notifies_monitors(s)

system_has_role(s: system, role: string) <=
 ** "The system " s " has a " role " component" **
 exists(comp: component) . has_role(comp, role)

critical_components_sends_heartbeat(s: system) <=
 ** " All the senders periodically send a heartbeat" **
 forall (sender : get_all("HeartbeatSender")) .
 exists(receiver : get_all("HeartbeatSender")).
 sends_heartbeat(sender, receiver) and
 property(sender, Props::SendingRate) =
 property(receiver, Props::CheckingRate)

Side by Side – Annotations + Resolute Rules

package AOCS
public
with Props;
with ResoluteRules;
system implementation AOCS.Impl
 subcomponents
 main: process AOCSprocessing.impl;
 (…)
 annex resolute {**
 . prove(check_heartbeat(this))
 **};

end AOCS.Impl;
end AOCS;

package AOCS
public
with Props;
process implementation AOCSprocessing.impl
 subcomponents
 ACF: thread AttitudeControlFunction
 {Props::Role => (Resource);};
 TCP: thread TelecommandProcessing
 {Props::Role => (Authenticator);};
 (…)

end AOCSprocessing.impl;
end AOCS;

 (b) Inserting Resolute rules into an AADL model

Fig. 6: AADL Model Annotation and Rules Embedding Examples

3.4 Architecture Verification

During the final phase, the Resolute rules are added to the top-level implementa-
tion of the system. This is done by invoking the resolute claims using the prove
keyword. For instance, Figure 6b shows the inclusion of the Resolute rules to
the top-level system implementation by using prove(check heartbeat(this).
When Resolute executes, it will verify the claims over the current system imple-
mentation (i.e., AOCS.Impl).

These claims can be checked using the Resolute plug-in installed on the Open
Source AADL Tool Environment (OSATE) [11]. This plugin will then conduct a
soundness proof over the entire system. Therefore, the proof is replicated (valid)
for very instance of the component’s implementation.

4 Case Example

We illustrate our approach with the aid of an autonomous robot based on the
resources provided by the NASA Lunar Robot [24]. The robot’s primary mis-
sion is to autonomously traverse the lunar surface, collect sample data related
to comets, dust, and celestial objects, record temperatures, perform scientific
experiments, and send results back to the earth-based Mission Control Center.

– Phase 1: Modeling the Robot Architecture The Robot, whose archi-
tecture is shown in Figure 7, has the capability of operating in two modes:
manual (remotely controlled by a ground control station) and autonomous
(by following a pre-established flight plan). Its architecture is structured

A Methodological Approach to Verify Architecture Resiliency 11

Fig. 7: High-Level Architecture Model of the Lunar Robot in AADL

around a Control System (CS), an Integrated Vehicle Health Management
(IVHM) system, the Sensors Virtual Machine (SVM), an Actuators Virtual
Machine (AVM), a Communication System, and an Operator Panel. The
Communication System implements the communication protocol to receive
commands sent from the ground station and forwarding those to the Con-
trol System (CS). Data from the sensors is first passed through the IVHM
component for correctness checking and is then forwarded to the CS. The
CS uses the data to make decisions and to process high-level commands sent
by the ground station. It then sends lower level commands to the actua-
tors. The Integrated Vehicle Health Management (IVHM) is responsible for
monitoring the health of the Lunar Robot, and when necessary, perform-
ing dynamic reconfigurations to maintain functionality. The Lunar Robot
receives inputs from cameras, GPS receivers, rate gyros, and star trackers,
and issues command to mechanical devices such as the power controller,
wheels, and scientific instruments.
Resiliency Requirements & Adopted Tactics: To achieve resiliency,
the lunar robot’s design adopts the following tactics:

• Heartbeat Tactic: the sensors within the “SVM” component period-
ically heartbeat messages to the “Sensors Selection” component, which
acts as both a Heartbeat Receiver and a Fault Monitor.

• Authorize Actors: the “Communication System” checks the identity
and privileges of the Mission Control Center (MCC) before exchanging
data and accepting commands from it.

• Maintain Audit Trails: Whenever the robot is in manual mode, but
receives no commands from the MCC for an extended period of time, it
switches to autonomous mode and returns to the geographical coordi-
nates of the last point of known contact (which is recorded in data logs).

12 J. C. S. Santos et al.

Given this requirement, the system adopts the Maintain Audit Trails
tactic [2] for maintaining logs that can later be used for system recovery.

For this case example, we limit our discussion to three tactics, however, in
medium to large scale systems, a variety of tactics are adopted.

– Phase 2: Architectural Weaknesses Modeling & Specification Sub-
sequently, the architect identifies potential weaknesses while adopting the
aforementioned tactics. First, the architect creates conceptual graphs for
these weaknesses, as previously shown in Figure 3 for the “Maintain Audit
Trails”, “Heartbeat”, and “Authorize Actors” tactics. Given these concep-
tual graphs, the software architect creates a property set declaring tactics’
role types, and data properties, as previously shown in Figure 4a. Using
this property set file, resolute rules are written to formally verify that these
weaknesses do not occur in the current design (e.g., Figure 5). Notice that
these models and specifications are written in such a way that make them
reusable. As a result, architects could re-use these models and specifications
to verify the same weaknesses in other designs that also adopt these tactics,
reducing the efforts in creating these artifacts from scratch.

Lunar Robot Annotations

system implementation IntegratedVehicleHealthManagement.impl
 subcomponents
 SensorDedicatedTests: system SensorDedicatedTests.impl;
 DataLogger: system DataLogger.impl
 {Props::Role => (AuditManager);};

 SensorSelection: system SensorSelection.impl
 {Props::Role => (HeartbeatReceiver,FaultMonitor,ActionTarget);

 Props::CheckingRate => 10;

 Props::AcceptableSilence=>20;};

 DiagnosisEngine: system DiagnosisEngine.impl
 {Props::Role => (ActionTarget);};

 ActuatorsRobustRegulators: system ActuatorsRobustRegulators.impl
 {Props::Role => (ActionTarget);};

end IntegratedVehicleHealthManagement.impl;
system implementation SensorsVirtualMachine.impl
 subcomponents
 Cameras: device devices::Camera
 {Props::Role => (HeartbeatSender);Props::SendingRate => 20;};
 GPSReceivers: device devices::GPSReceiver{Props::Role => (HeartbeatSender);
 Props::SendingRate => 10;};

 RateGyros: device devices::RateGyros{Props::Role => (HeartbeatSender);
 Props::SendingRate => 10;};

 StarTracker: device devices::StarTracker{Props::Role => (HeartbeatSender);
 Props::SendingRate => 10;};

end SensorsVirtualMachine.impl;

system implementation ControlSystem.impl
 subcomponents
 TaskSequencerDispatcher: system TaskSequencerDispatcher.impl
 {Props::Role => (ActionTarget);};

end ControlSystem.impl;
system implementation LunarRobot.impl
 subcomponents
 SVM: system SensorsVirtualMachine.impl
 {Props::Role => (Resource);};

 CS: system ControlSystem.impl
 {Props::Role => (Resource);};

 IVHM: system IntegratedVehicleHealthManagement.impl
 {Props::Role => (Resource);};

 OperatorPanel: system OperatorPanel.impl
 {Props::Role => (Entrypoint);};

 CommunicationSystem: system CommunicationSystem.impl
 {Props::Role => (Authorizer,Authenticator);};

 AVM: system ActuatorVirtualMachine.impl
 {Props::Role => (Resource);};

 annex resolute {**
 prove(check_heartbeat(this))

 prove(check_audit_trails(this))
 prove(check_authorize_actors(this))
 **};

end LunarRobot.impl;

Fig. 8: Lunar Robot’s AADL model annotated with roles

– Phase 3: Model Annotation Once weaknesses’ models and specifications
are created, architects manually tag the Lunar Robot’s architecture with
roles and properties, as shown in Figure 8. This figure does not contain all
the AADL model, but just the elements that have annotations.

– Phase 4: Architecture Verification
The architect inserts the developed resolute rules (highlighted in blue in
Figure 8). Through performing a reasoning on top of this augmented model
(containing analysis rules and annotations), the technique detects the fol-
lowing weaknesses (whose locations were colored in red in Figure 7):
Weakness #1: an Omission of Security-relevant Information because the
Data Logger is not tracking information from the actuators. It is caused by a
connection missing from the Data Logger to the ActuatorsRobustRegulators.

A Methodological Approach to Verify Architecture Resiliency 13

Figure 9 shows the output of the resolute tool indicating this problem (notice
the failed claim that all Action Targets are reporting critical operations to
the Audit Manager).
Weakness #2: a Mismatch between Send and Receive Periods which is
caused by the Cameras sending heartbeat messages every 20 seconds whereas
the checking rate of the “Sensor Selection” (Heartbeat receiver) is 10 seconds,
as indicated in the SendingRate value colored in red in Figure 8.
Weakness #3: an Authorization bypass because the “Operator Panel” com-
ponent, which is also an entrypoint to the system, directly communicates
with the “Control System” (CS) without authorization (connection high-
lighted in red in Figure 7).

Fig. 9: Resolute output

5 Related Work

There are several streams of research on analyzing and verifying architectural
models by translating AADL models into model checkers [20,6]. One major dif-
ference between these works and our work is the property notation used for
specifying behavior; the prior work uses subsets of the AADL behavioral annex
to focus on low level implementations issues. In contrast, we focus on design
flows. Johnsen et al. [20] presents a technique for verifying the completeness and
consistency of AADL specifications.

Furthermore, there have been various works which use ADDL along with a
declarative formalism provided by languages such as AGREE, to verify the sat-
isfaction of software requirements in the model [1]. However, these approaches
will not address model checking of components and interdependencies among
them, as well as specific resiliency properties. In contrast, we rely on Resolute
that enables reachability analysis required to examine the dependencies between
components and elements in AADL to detect various bypasses of mitigation tech-
niques. For instance, the SPEEDS [1] approach uses a model-based engineering
methodology supported by formal analyses. However, it focuses on verification
of software requirements. It requires that the architectural description of the
system (AADL models) to be annotated with assume-guarantee style contracts
on components that implement software requirements.

14 J. C. S. Santos et al.

Ellison et al. [9] proposes an enhancement for the AADL to incorporate
security concerns based on Microsoft STRIDE framework. Similar to our work,
they discuss a custom property set which is used to annotate and analyze the
system architecture. Our work, however, differs in that we provide a methodology
whereby we provide a continuous resiliency analysis starting with the system’s
architecture instead of a threat model.

Prior works also explored the automated detection of weaknesses in dataflow
diagrams (DFDs) [32,3,30]. For example, Berger et al. [4] presented a tool-
supported approach to help architectural risk analysis via threat modeling; the
tool is used to automatically identify security threats from data flow diagrams.
Tuma et al. [32] described the use of reusable queries to find security flaws in
DFDs. Unlike these prior works, our paper describes a methodology to system-
atically find weaknesses in the system that affects its resiliency, that include not
only security concerns, but also other quality attributes, such as safety, perfor-
mance, and availability.

6 Conclusion

We have presented a methodological approach to detect the existence of common
architectural resiliency weaknesses of systems. At the core of this methodology
is the development of weaknesses models and specifications, which are used to
automatically verify the system’s resiliency. Although the construction of these
models and specifications rely on an architects expertise, they can be built in
such a way that can be reused across AADL models for different systems.

Our long-term goal is to provide software architects with mechanisms and
tools to develop certified software (and hardware) all the way down from ar-
chitectural design to implementations details. This work is the first part of our
envisaged work. As future work, we plan to automate the verification process
with the OSATE IDE [11] and Resolute tools [13]. We plan to create a complete
catalog of resiliency tactics, write a comprehensive set of assurance cases for
each tactic, and automate the process of design and checking of resiliency claims
through the realization of an Osate plug-in.

Acknowledgement

This work is partially supported by Defense Advanced Research Projects Agency
(DARPA) under award number: 006376-002.

References

1. SPEculative and Exporatory Design in System engineering, http://www.speeds.
eu.com/

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Professional, 3rd edn. (2012)

http://www.speeds.eu.com/
http://www.speeds.eu.com/

A Methodological Approach to Verify Architecture Resiliency 15

3. Berger, B.J., Sohr, K., Koschke, R.: Extracting and analyzing the implemented
security architecture of business applications. In: 17th European Conference on
Software Maintenance and Reengineering (CSMR). pp. 285–294. IEEE (2013).
https://doi.org/10.1109/CSMR.2013.37

4. Berger, B.J., Sohr, K., Koschke, R.: Automatically extracting threats from ex-
tended data flow diagrams. In: International Symposium on Engineering Secure
Software and Systems. pp. 56–71. Springer (2016)

5. Bodeau, D., Graubart, R.: Cyber resiliency design principles. MITRE (2017)
6. Bodeveix, J.P., Filali, M., Garnacho, M., Spadotti, R., Yang, Z.: Towards a verified

transformation from aadl to the formal component-based language fiacre. Science
of Computer Programming 106, 30 – 53 (2015)

7. Booch, G.: The economics of architecture-first. IEEE Software 24(5), 18–20 (Sep
2007). https://doi.org/10.1109/MS.2007.146

8. Cechticky, V., Montalto, G., Pasetti, A., Salerno, N.: The AOCS framework. Eu-
ropean Space Agency-Publications-ESA SP 516, 535–540 (2003)

9. Ellison, R., Householder, A., Hudak, J., Kazman, R., Woody, C.: Extending aadl for
security design assurance of cyber-physical systems. Tech. Rep. CMU/SEI-2015-
TR-014, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA (2015), http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=
449510

10. Feiler, P.H., Gluch, D., McGregor, J.D.: An architecture-led safety analysis method.
In: 8th European Congress on Embedded Real Time Software and Systems (ERTS
2016) (2016)

11. Feiler, P.H., Gluch, D.P.: Model-based engineering with AADL: an introduction to
the SAE architecture analysis & design language. Addison-Wesley (2012)

12. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis &
design language (AADL): An introduction. Tech. rep., SEI (2006).
https://doi.org/10.1184/R1/6584909.v1

13. Gacek, A., Backes, J., Cofer, D., Slind, K., Whalen, M.: Resolute: An assurance
case language for architecture models. In: Proceedings of the 2014 ACM SIGAda
Annual Conference on High Integrity Language Technology. pp. 19–28. ACM, New
York, NY, USA (2014)

14. Goldman, H.G.: Building secure, resilient architectures for cyber mission assurance.
Tech. rep., The MITRE Corporation (2010)

15. Hanmer, R.: Patterns for Fault Tolerant Software. Wiley Series in Software Design
Patterns (2007)

16. Heyman, T., Scandariato, R., Joosen, W.: Reusable formal models for secure soft-
ware architectures. In: 2012 Joint Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA) and European Conference on Software Architecture (ECSA).
pp. 41–50. IEEE (2012)

17. Hugues, J.: AADLib: a library of reusable AADL models. Tech. rep., SAE Technical
Paper (2013)

18. Hukerikar, S., Engelmann, C.: Resilience design patterns: A structured approach
to resilience at extreme scale. arXiv preprint arXiv:1708.07422 (2017)

19. IEEE Center for Secure Design: Avoiding the top 10 software security design flaws.
https://ieeecs-media.computer.org/media/technical-activities/CYBSI/
docs/Top-10-Flaws.pdf (2015), (Accessed on 10/06/2016)

20. Johnsen, A., Lundqvist, K., Pettersson, P., Jaradat, O.: Automated verification
of aadl-specifications using uppaal. In: Proceedings of the 2012 IEEE 14th Inter-
national Symposium on High-Assurance Systems Engineering. p. 130–138. HASE
’12, IEEE Computer Society, USA (2012)

https://doi.org/10.1109/CSMR.2013.37
https://doi.org/10.1109/MS.2007.146
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=449510
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=449510
https://doi.org/10.1184/R1/6584909.v1
https://ieeecs-media.computer.org/media/technical-activities/CYBSI/docs/Top-10-Flaws.pdf
https://ieeecs-media.computer.org/media/technical-activities/CYBSI/docs/Top-10-Flaws.pdf

16 J. C. S. Santos et al.

21. Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S., Fedak, V., Shapochka,
A.: A case study in locating the architectural roots of technical debt. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering. vol. 2,
pp. 179–188 (2015)

22. Kazman, R., Klein, M., Clements, P.: Atam: A method for architecture evaluation.
Software Engineering Institute (2000)

23. Kim, S., Kim, D.K., Lu, L., Park, S.Y.: A tactic-based approach to embodying non-
functional requirements into software architectures. In: 2008 12th International
IEEE Enterprise Distributed Object Computing Conference. pp. 139–148 (2008)

24. Mirakhorli, M., Cleland-Huang, J.: Using tactic traceability information models to
reduce the risk of architectural degradation during system maintenance. In: Pro-
ceedings of the 2011 27th IEEE International Conference on Software Maintenance.
pp. 123–132. ICSM ’11, IEEE Computer Society, Washington, DC, USA (2011)

25. Mirakhorli, M., Cleland-Huang, J.: Detecting, tracing, and monitoring architec-
tural tactics in code. IEEE Transactions on Software Engineering 42(3), 205–220
(2015)

26. Mirakhorli, M., Shin, Y., Cleland-Huang, J., Cinar, M.: A tactic-centric approach
for automating traceability of quality concerns. In: Proceedings of the 34th Inter-
national Conference on Software Engineering. ICSE ’12, IEEE Press (2012)

27. Munoz, M.: Space systems modeling using the architecture analysis & design lan-
guage (AADL). In: 2013 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). pp. 97–98. IEEE (2013)

28. Santos, J.C.S., Tarrit, K., Mirakhorli, M.: A catalog of security architecture weak-
nesses. In: 2017 IEEE International Conference on Software Architecture Work-
shops (ICSAW). pp. 220–223 (April 2017)

29. Santos, J.C.S., Suloglu, S., Ye, J., Mirakhorli, M.: Towards an Automated Ap-
proach for Detecting Architectural Weaknesses in Critical Systems, p. 250–253.
Association for Computing Machinery, New York, NY, USA (2020), https://doi.
org/10.1145/3387940.3392222

30. Sion, L., Tuma, K., Scandariato, R., Yskout, K., Joosen, W.: Towards automated
security design flaw detection. In: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering Workshop (ASEW). IEEE (2019)

31. Stewart, D., Whalen, M.W., Cofer, D., Heimdahl, M.P.: Architectural modeling
and analysis for safety engineering. In: International Symposium on Model-Based
Safety and Assessment. pp. 97–111. Springer (2017)

32. Tuma, K., Sion, L., Scandariato, R., Yskout, K.: Automating the early detection
of security design flaws. In: Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems. pp. 332–342
(2020)

33. Vanciu, R., Abi-Antoun, M.: Finding architectural flaws in android apps is easy. In:
Proceedings of the 2013 Companion Publication for Conference on Systems, Pro-
gramming, & Applications: Software for Humanity. p. 21–22. SPLASH ’13 (2013)

https://doi.org/10.1145/3387940.3392222
https://doi.org/10.1145/3387940.3392222

	A Methodological Approach to Verify Architecture Resiliency

