
Using Large Language Models to Generate JUnit Tests: An
Empirical Study

Mohammed Latif Siddiq

msiddiq3@nd.edu

University of Notre Dame

Notre Dame, IN, USA

Joanna C. S. Santos

joannacss@nd.edu

University of Notre Dame

Notre Dame, IN, USA

Ridwanul Hasan Tanvir

rpt5409@psu.edu

Pennsylvania State University

University Park, PA, USA

Noshin Ulfat

noshin.ulfat@iqvia.com

IQVIA Inc.

Dhaka, Bangladesh

Fahmid Al Rifat

fahmid@cse.uiu.ac.bd

United International University

Dhaka, Bangladesh

Vinícius Carvalho Lopes

vlopes@nd.edu

University of Notre Dame

Notre Dame, IN, USA

ABSTRACT
A code generation model generates code by taking a prompt from

a code comment, existing code, or a combination of both. Although

code generationmodels (e.g., GitHub Copilot) are increasingly being
adopted in practice, it is unclear whether they can successfully be

used for unit test generation without fine-tuning for a strongly

typed language like Java. To fill this gap, we investigated how well

three models (Codex, GPT-3.5-Turbo, and StarCoder) can generate

unit tests. We used two benchmarks (HumanEval and Evosuite

SF110) to investigate the effect of context generation on the unit test

generation process. We evaluated the models based on compilation

rates, test correctness, test coverage, and test smells. We found that

the Codex model achieved above 80% coverage for the HumanEval

dataset, but no model had more than 2% coverage for the EvoSuite

SF110 benchmark. The generated tests also suffered from test smells,

such as Duplicated Asserts and Empty Tests.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Computing methodologies→ Instance-based learn-
ing.

KEYWORDS
test generation, unit testing, large language models, test smells,

junit

ACM Reference Format:

Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir,

Noshin Ulfat, Fahmid Al Rifat, and Vinícius Carvalho Lopes. 2024. Using

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

EASE 2024, 18–21 June, 2024, Salerno, Italy
© 2024 ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/XXXXXXX.XXXXXXX

Large Language Models to Generate JUnit Tests: An Empirical Study. In Pro-
ceedings of The 28th International Conference on Evaluation and Assessment
in Software Engineering (EASE 2024). ACM, New York, NY, USA, 11 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Unit testing [8] is a software engineering activity in which indi-

vidual units of code are tested in isolation. This is an important

activity because it helps developers identify and fix defects early

on in the development process and understand how the various

units of code in a software system fit together and work as a co-

hesive whole. Despite its importance, in practice, developers face

difficulties when writing unit tests [17, 36, 55, 65]. This leads to a

negative effect: developers may not write tests for their code. In

fact, a prior study [26] showed that out of 82,447 studied GitHub

projects, only 17% of them contained test files.

Since implementing test cases to achieve good code coverage is a

time-consuming and error-prone task, prior works [60, 66] devel-

oped techniques to automatically generate unit tests. Although au-

tomatically generated unit tests help increase code coverage [6, 58],

they are still not frequently used in practice [23].

With the advances of large language models (LLMs), LLM-based

code generation tools (e.g., GitHub Copilot) are increasingly be-

coming part of day-to-day software development. A survey of 500

US-based developers showed that 92% of them are using LLM-based

coding assistants both for work and personal use [61]. Part of this

fast widespread adoption is that LLMs automate repetitive tasks so

that they can focus on higher-level, challenging tasks [71]. With the

increasing popularity of code generation LLMs, prior works investi-

gated the correctness of the generated code [18], their quality [62],

security [50] and whether they can be used for API learning tasks

[31], and code complexity prediction [63]. However, it is currently

unclear the effectiveness of using prompt-based pre-trained code

generation models to generate unit tests for strongly typed lan-

guages such as Java. In fact, prior works [4, 14] have shown that

LLMs perform better for weakly typed languages (e.g., Python and

JavaScript) but not as well for strongly typed languages. This is

https://orcid.org/0000-0002-7984-3611
https://orcid.org/0000-0001-8743-2516
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EASE 2024, 18–21 June, 2024, Salerno, Italy Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat, and Vinícius Carvalho Lopes

partially due to the limited training sets availability and the fact

that strongly typed languages have strict type-checking that can

prevent the code from even compiling.

In light of this research gap, we conducted an empirical study using

three LLMs (Codex [16], GPT-3.5-Turbo [1] and StarCoder [39]) to

generate JUnit5 tests for classes in the HumanEval dataset’s Java

version [5] and 47 open-source projects from the SF110 dataset [20].

In our study, we investigate how well LLMs can generate JUnit tests

(RQ1) and how different context styles (e.g., only using the method

under test, the presence/ absence of JavaDocs etc.) provided as input
to an LLM can influence its performance (RQ2). We examined the

generated tests with respect to their compilation rates, correctness,
code coverage, and quality (in terms of test smells). While concurrent

works [38, 57] studied the usefulness of LLM as a helper for search-
based test generation techniques on weakly typed languages (i.e.,
Python and JavaScript), our work investigates whether LLMs can

be used off-the-shelf to generated unit tests for a strongly-typed

language like Java. Moreover, we examine these generated tests in

terms not only of their correctness, but also their quality, as well as
the effectiveness of different context styles.

The contributions of our work are: 1 A systematic study of three

LLMs for zero-shot unit test generation for 194 classes from 47

open-source projects in the SF110 dataset [21] and 160 classes from

the HumanEval dataset [5]. 2 An investigation of the quality of

the produced unit tests by studying the prevalence of test smells in

the generated unit tests. 3 A comparison of how different context

styles affect the performance of LLMs in generating tests. 4 A

discussion about the implication of using code generation models

for unit test generation in a Test Driven Development (TDD) envi-

ronment. All the scripts used to gather the data and spreadsheets

compiling all the results are available on Zenodo
1
.

2 BACKGROUND
2.1 Unit Tests & Test Smells
The goal of unit testing is to validate that each program unit is

working as intended and meets its requirements [37]. A unit refers
to a piece of code that can be isolated and examined independently

(e.g., functions/methods, classes, etc.). Just like production code,

unit tests need to be not only correct but also satisfy other quality

attributes, such as maintainability and readability [26].

Unit test smells (henceforth “test smells”) are indicators of poten-

tial problems, inefficiencies, or bad programming/design practices

in a unit test suite [28, 29, 49, 51, 67]. There are many test smell

types, ranging from tests that are too slow/fragile to tests that are

too complex or too tightly coupled to implementing the code under

test [45]. For example, the Java code in Listing 1 has a unit test

for a method from the LargestDivisor class. It checks whether the

Method Under Test (MUT) returns the largest divisor of a number.

Although this test is correct, there is no explanation for the expected

outputs passed to the assertions, which is a case of theMagic Num-
ber Test smell [45]. It also has multiple assertions in the same test

method, an example of Assertion Roulette smell [67].

1
https://doi.org/10.5281/zenodo.10530787

LargestDivisorTest.java
1 public class LargestDivisorTest {
2 @Test
3 void testLargestDivisor() {
4 assertEquals(5, LargestDivisor.largestDivisor(15));
5 assertEquals(1, LargestDivisor.largestDivisor(3));
6 }
7 }

Listing 1: Example of Unit Test and Unit Test Smell

2.2 Code Generation
Large Language Models (LLMs) are advanced AI systems capable

of understanding and generating human-like text. They can bed

used to answer questions, create content, and even engage in con-

versation. Code LLMs (henceforth simply “LLMs”) are a specialized

type of LLMs trained on source code to help with code-related

tasks, e.g., code completion [34, 35, 64], search [19], and summa-

rization [25]. They are designed to generate source code from a

given prompt [3], such as a text written in natural language, pseu-

docode, code comments etc. These techniques may also take into

account the surrounding context when generating the code, such as
file/variable names, other files in the software system, etc.

3 METHODOLOGY
In this work, we answer two research questions.

RQ1 How well can LLMs generate JUnit tests?

We used GPT-3.5-Turbo, StarCoder, and Codex to generate unit tests

for competitive programming assignments from the Java version

of the HumanEval dataset [5] as well as 47 open-source projects

from the EvoSuite SF110 benchmark dataset[20]. We measured the

LLMs’ performance by computing the test’s branch/line coverage,

correctness, and quality (in terms of test smells). We also compared

the performance of these models with Evosuite [20], an existing

state-of-the-art approach.

RQ2 Howdo different code elements in a context influence the
performance of LLMs in generating JUnit tests?

When developers use LLMs to generate JUnit tests, they create a

prompt (e.g., “Write a JUnit test to verify that login(req) returns
...”) and the method (unit) under test becomes the context for that
prompt. Since the unit under test (context) can include several code
elements, we investigate how these different elements affect the gen-

erated tests. To answer RQ2, we conducted a controlled experiment

in which we created 3 different scenarios for the HumanEval [5, 16],

and 4 scenarios for 47 open-source projects from the EvoSuite SF110

dataset[20]. Each scenario contains a different set of code elements.

Then, we use Codex, GPT-3.5-Turbo, and StarCoder to generate JU-

nit tests for each scenario. We measured their performance in terms

of compilation rates, code coverage, the total number of correct

unit tests, and the incidence of test smells.

3.1 Answering RQ1
We followed a three-step systematic process to investigate howwell

LLMs can generate unit tests: 1 we collected 160 Java classes from

the multilingual HumanEval dataset [5] and 194 Java classes

from 47 projects in the Evosuite SF110 benchmark dataset [13,
21]; 2 we generated JUnit5 tests using three LLMs; 3 we computed

the compilation rates, correctness, number of smells, as well as the

https://doi.org/10.5281/zenodo.10530787

Using Large Language Models to Generate JUnit Tests: An Empirical Study EASE 2024, 18–21 June, 2024, Salerno, Italy

line/branch coverage for the generated tests and compared with

Evosuite v1.2.0, which is a state-of-the-art unit test generation

tool [20]. In this paper,methods are our units under test.

3.1.1 Data Collection. Weuse themultilingual HumanEval dataset [5]
because it has been widely used in prior works [24, 47, 62] to eval-

uate code LLMs. Similarly, we use the SF110 dataset because it is a
popular benchmark for unit test generation [22].

GreatestCommonDivisor.java
1 class GreatestCommonDivisor {
2 /**
3 * Return the greatest common divisor of two integers a and b.
4 * > greatestCommonDivisor(3, 5)
5 * 1
6 */
7 public static int greatestCommonDivisor(int a, int b) {
8 if (a == 0) return b;
9 return greatestCommonDivisor(b % a, a);
10 }
11 }

Listing 2: Sample from the extended HumanEval [5]

–ThemultilingualHumanEval dataset [5] contains 160 prompts
describing programming problems for Java and other programming

languages crafted from the original Python-based HumanEval [16].

However, this multilingual version does not provide a solution for

each prompt. Thus, we wrote the solution for each problem and

tested our implementation using the provided test cases. Listing 2

shows a sample taken from this dataset, where the prompt is in

lines 1–7 and the solution is in lines 8–11.

– The SF110 dataset, which is an Evosuite benchmark consisting

of 111 open-source Java projects retrieved from SourceForge. This

benchmark contains 23,886 classes, over 800,000 bytecode-level

branches, and 6.6 million lines of code [22].

Class and Method Under Test Selection. Each class in the multilin-

gual HumanEval [5] has one public static method and may also

contain private “helper” methods to aid the solution implemen-

tation. In this study, all the public static methods are selected as

methods under test (MUTs).

For the SF110 benchmark, we first retrieved only the classes that

are public and not abstract. We then discarded test classes (i.e.,
placed on a src/test folder, or that contains the keyword “Test” in its

name). Next, we identified testable methods by applying inclusion
and exclusion criteria. The exclusion criteria are applied to the non-
static methods that (E1) have a name starting with “get” and takes

no parameters, or (E2) have a name starting with “is”, takes no

parameter and returns a boolean value, or (E3) have a name start-

ing with “set”, or (E4) override the ones from java.lang.Object

(i.e., toString(), hashCode(), etc.). The exclusion criteria E1–E3 are

meant to disregard “getter” and “setter” methods. The inclusion

criteria are that the method has (I1) a public visibility, (I2) a return
value, and (I3) a good JavaDoc. A good JavaDoc is one that (i)
has a description or has a non-empty @return tag, and (ii) all the
method’s parameters have an associated description with @param

tag. After this step, we obtained a total of 30,916 methods under

test (MUTs) from 2,951 classes. Subsequently, we disregard projects

based on the number of retrieved testable methods (MUTs). We kept

projects with at least one testable method (i.e., first quartile) and at

most 31 testable methods (i.e., third quartile), obtaining a total of

53 projects. This filtering aimed to remove projects with too little

or too many MUTs, which would exceed the limit of the number of

tokens that the models can generate. We then removed 6 of these

projects in which we could not compile their source code, obtaining

47 projects and a total of 411 MUTs from 194 classes.

3.1.2 Unit Test Generation. We used Codex, GPT-3.5-Turbo, and

StarCoder to generate JUnit tests. Codex is a 12 billion parameters

LLM [16] descendant of the GPT-3model [11] which powers GitHub

Copilot. In this study, we used code-davinci-002, the most powerful

codex model version of Codex. GPT-3.5-turbo is the model that

powers the ChatGPT chatbot. It allows multi-turn conversation,

and it can be instructed to generate code [1]. StarCoder is a 15.5
billion parameter open-source code generation model with 8,000

context length and has infilling capabilities. In this work, we used

the base model from the StarCoder code LLM series.

To generate the JUnit tests, we performed a two-step process:

1 Context and Prompt Creation: We created aunit test prompt
(henceforth “prompt”), which instructs the LLM to generate 10 test

cases for a specific method, and a context, which encompasses the

whole code from the method’s declaring class as well as import

statements to core elements from the JUnit5 API. Listing 3 illustrates

the structure of a prompt and context, in which lines 1-9 and lines

10-20 are part of the context and prompt, respectively. The context
starts with a comment indicating the class’ file name followed by

its full code (i.e., its package declaration, imports, fields, methods,

etc.). Similarly, the prompt starts with a comment indicating the

expected file name of the generated unit test. Since a class can have

more than one testable method, we generated one unit test file

for each testable method in a class and appended a suffix to avoid

duplicated test file names. A suffix is a number that starts from zero.

After this code comment, the prompt includes the same package

declaration and import statements from the class. It also has import

statements to the @Test annotation and the assert* methods (e.g.,
assertTrue(...)) from JUnit5. Subsequently, the prompt contains

the test class’ JavaDoc that specifies the MUT, and how many test

cases to generate. The prompt ends with the test class declaration

followed by a new line (\n), which will trigger the LLM to generate

code to complete the test class declaration.

classNameSuffixTest.java
1 // ${className}.java
2 ${packageDeclaration}
3 ${importedPackages}
4 class ${className}{
5 /* ... code before the method under test ... */
6 public ${methodSignature}{ /* ... method implementation ... */ }
7 /* ... code after the method under test ... */
8 }
9

10 // ${className}${suffix}Test.java
11 ${packageDeclaration}
12 ${importedPackages}
13 import org.junit.jupiter.api.Test;
14 import static org.junit.jupiter.api.Assertions.*;
15

16 /**
17 * Test class of {@link ${className}}.
18 * It contains ${numberTests} unit test cases for the
19 * {@link ${className}#${methodSignature}} method.
20 */
21 class ${className}${suffix}Test {

Listing 3: Prompt template for RQ1

2 Test Generation: Although all used LLMs can generate code,

they have technical differences in terms of number of tokens they

EASE 2024, 18–21 June, 2024, Salerno, Italy Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat, and Vinícius Carvalho Lopes

can handle. Thus, we took slightly different steps to generate tests

with these LLMs. We used the OpenAI API to generate tests using

the Codex model. Codex can take up to 8,000 tokens as input and

generate up to 4,000 tokens. Thus, we configured this model in two

ways: one to generate up to 2,000 tokens and another to generate up

to 4,000 tokens. We will call each of them Codex (2K) and Codex
(4K), respectively. For both cases, we set the model’s temperature
as zero in order to produce more deterministic and reproducible

output motivated by previous studies [15, 53, 56]. The rest of its

inference parameters are set to their default values.

GPT-3.5-Turbo is also accessible via the OpenAI API. It can take up
to 4,096 tokens as input and generate up to 2,048 tokens. We asked

this LLM to generate up to 2,000 tokens and dedicated the rest (2,096)

to be used as input. Its temperature is also set to zero and the other

parameters are set to their defaults. Moreover, we set the system
role’s content to “You are a coding assistant. You generate only source
code.” and the user role’s content to the context and prompt. Then,

the assistant role outputs the generated test. For StarCoder, we
used the StarCoderBase model available on HuggingFace library

2
.

It has an 8,000 tokens context window combining the input prompt

tokens and the output tokens. We limit the output token to 2,000

tokens to align the experiment with the other two models. We also

keep the same inference parameters as the Codex model.

3.1.3 Data Analysis and Evaluation. We compiled all the unit tests

together with their respective production code and required li-

braries. As we compiled the code and obtained compilation errors,

we observed that several of these errors were caused by simple

syntax problems that could be automatically fixed through heuris-
tics. Specifically, we noticed that LLMs may (i) generate an extra
test class that is incomplete, (ii) include natural language expla-
nations before and/or after the code, (iii) repeat the class under
test and/or the prompt, (iv) change the package declaration or (v)
remove the package declaration, (vi) generate integer constants
higher than Integer.MAX_VALUE, (vii) generate incomplete unit tests

after it reaches its token size limit. Thus, we developed 7 heuristics

(H1–H7) to automatically fix these errors :

H1 It removes any code found after any of the following patterns:

"</code>", "\n\n// {CUT_classname}", and "\n```\n\n##".
H2 It keeps code snippets within backticks (i.e., ``` code ```) and

removes any text before and after the backticks.

H3 It removes the original prompt from the generated unit test.

H4 It finds the package declaration in the unit test and renames it

to the package of the CUT.

H5 It adds the package declaration if it is missing.

H6 It replaces large integer constants by Integer.parseInt(n).

H7 It fixes incomplete code by iteratively deleting lines (from bot-

tom to top) and adding 1-2 curly brackets. At each iteration, it

removes the last line and adds one curly bracket. If the syntax

check fails, it adds two curly brackets and checks the syntax

again. If it fails, it proceeds to the next iteration by removing

the next line (bottom to top). The heuristic stops if the syntax

check passes or it finds the class declaration (i.e., “class ABC”),

whichever condition occurs first.

2
https://huggingface.co

Metrics. We ran each generated unit test with JaCoCo [2] to com-

pute the line coverage, branch coverage and test correctnessmet-

rics. Branch Coverage [33] measures how many branches are cov-

ered by a test, i.e., 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠
× 100. Line Coverage

measures how many lines were executed by the unit test out of

the total number of lines [32], i.e., 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑙𝑖𝑛𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑙𝑖𝑛𝑒𝑠
× 100.

Test Correctness measures how effectively an LLM generates cor-

rect input/output pairs. We assume that the code under test is

implemented correctly. The reasoning behind this assumption is

twofold: the HumanEval dataset contains common problems with

well-known correct solutions, and the SF110 projects aremature
open-source projects. Given this assumption, a failing test case

is considered to be incorrect. Thus, we compute the number of

generated unit tests that did not fail.

We ran the tests using a timeout of 2 and 10 minutes for the Hu-

manEval and the SF110 datasets, respectively, because we observed

generated tests with infinite loops. Moreover, we analyzed the qual-

ity of the unit test from the perspective of the test smells. To this

end, we used TsDetect, a state-of-the-art tool that detects 20 test

smell types [51, 52]. Due to space constraints, we provide a list of

the test smells detectable by TsDetect with their descriptions in

our replication package.

3.2 RQ2: Code Elements in a Context
To investigate how different code elements in a context influence

the generated unit test, we first created three scenarios for the

HumanEval dataset and four for the Evosuite Benchmark.

HumanEval Scenarios: Recall that each MUT in this dataset has

a JavaDoc describing the method’s expected behavior and examples

of input-output pairs (see Listing 1). Thus, we created one scenario

(S1) that does not contain any JavaDoc (e.g., the JavaDoc from lines

2-6 within Listing 2 is removed from the CUT). The second scenario

(S2) has the JavaDoc but it does not include input/output examples,

only the method’s behavior description (e.g., Listing 2 will not have
lines 4-5). The last scenario (S3) does not include the MUT’s imple-

mentation, only its signature (e.g., Listing 2 will not have lines 8-10).
S1 and S2 demonstrate the effect of changing JavaDoc elements.

Test-Driven Development (TDD) [8] inspires scenario S3, where
test cases are written before the code implementation.

SF110 Scenarios: Unlike HumanEval, the classes from SF110 do

not necessarily include input/output pairs. Thus, we created scenar-

ios slightly different than before. Scenario S1 removes (i) any code

within the class before and after the method under test as well as (ii)

the class’ JavaDoc. Scenario S2 is the same as S1, but including the

JavaDoc for the method under test. Scenario S3 is the same as S2,

except that there is no method implementation for the MUT (only

its signature). Scenario S4 mimics S3, but it also includes all the

fields and the signatures for the other methods/constructors in the

MUT’s declaring class. Scenarios S1 and S2 demonstrate the effect

of having or not having code documentation (JavaDoc). S3 verifies

the usefulness of LLMs for TDD whereas S4 is used to understand

how code elements in a class are helpful for test generation.

https://huggingface.co

Using Large Language Models to Generate JUnit Tests: An Empirical Study EASE 2024, 18–21 June, 2024, Salerno, Italy

After creating each of the scenarios above, we generated unit tests

using the same models and following the steps outlined in Sec-

tion 3.1. Then, we used JUnit5, JaCoCo, and TsDetect to measure

test coverage, correctness, and quality. Similar to RQ1, we also

compared the results to Evosuite [20].

4 RQ1 RESULTS
We analyze the generated tests according to their: (i) compilation
status; (ii) correctness; (iii) coverage; and (iv) quality.

4.1 Compilation Status
Table 1 reports the percentage of generated unit tests that are compi-

lable before and after applying the heuristic-based fixes described

in Section 3.1.3. The number of unit tests and test methods for each

model and dataset is shown in the last two columns of Table 1. We

obtained a total 2,536 test methods (i.e., a method with an @Test

annotation) scattered across 572 compilable Java test files for Hu-

manEval and 2,022 test methods within 600 test files for SF110. For
comparison, we also ran Evosuite [20] (with default configuration

parameters) to generate unit tests for each of the MUTs. Moreover,

in the case of HumanEval, we manually created a JUnit5 test for

each input/output pair provided in each prompt.

HumanEval Results. On the one hand, we found that less than half
of the unit tests generated by Codex (2K), Codex (4K), and GPT-

3.5-Turbo are compilable for the classes in HumanEval. On the

other hand, 70% of StarCoder’s generated unit tests compiled. Upon

applying heuristic-based fixes, the compilation rates have increased

an average of 41%. The biggest increase was observed for the Codex
(2K) model; its compilation rate increased from 37.5% to 100%.
StarCoder was the LLM that the heuristics were the least able to

improve; it only increased the compilation rate by 6.9%.
SF110 Results. For the SF110 dataset, the compilation rates are lower

than the ones observed for HumanEval. Between 2.7% and 12.7%
of the generated unit tests for the SF110 dataset are compilable

across all the studied LLMs. StarCoder was the LLM that generated

the highest amount of compilable tests (12.7%), whereas Codex
(2K) and Codex (4K) had the lowest compilation rate (2.7% and

3.4%, respectively). Similar to HumanEval, the heuristic-based fixes

were able to increase the compilation rates by 81%, on average.

Codex was the model with the highest increase; the compilation

rates increased from less than 5% to over 99%. StarCoder was the
model that least benefited with our heuristics; its compilation rate

increased by only 57.2%.

Table 1: Compilation status of the generated unit tests
LLM % Compilable % Compilable after fix #Test Methods #Test Classes

H
um

an
Ev

al

GPT-3.5-Turbo 43.1% 81.3% 1,117 130

StarCoder 70.0% 76.9% 948 123

Codex (2K) 37.5% 100% 697 160

Codex (4K) 44.4% 99.4% 774 159

Evosuite 100% NA 928 160

Manual 100% NA 1,303 160

SF
11

0

GPT-3.5-Turbo 9.7% 85.9% 194 87

StarCoder 12.7% 69.8% 1,663 368

Codex (2K) 2.7% 74.5% 1,406 222

Codex (4K) 3.4% 83.5% 1,039 152

Evosuite 100% NA 12,362 1,618

Compilation error root causes. The unit tests that were not fixable
through heuristics were those that contained semantic errors that

failed the compilation. To observe the most common root causes of

compilation errors, we collected all the compilation errors and clus-

tered them using K-means [42]. We used the silhouette method [54]

to find the number of clusters K (𝐾 = 48). After inspecting these

48 clusters and making manual adjustments to clusters to fix im-

precise clustering, we found that the top 3 compilation errors for

HumanEval were caused by unknown symbols (i.e., the com-

piler cannot find the symbol), incompatible conversion from
java.util.List<T> to java.util.List<X>, and incompatible con-
version from int[] to java.util.List<Integer>. Unknown sym-

bols accounted for more than 62% of the compilation errors. Sev-

eral of these unknown symbols were caused by invoking non-

existent methods or instantiating non-existent classes. For example,

StarCoder produced several test cases that invoked the method

java.util.List.of(int,int,int,...), which does not exist. For the

SF110 dataset, the top 3 compilation errors were unknown sym-
bols, class is abstract; cannot be instantiated, and no suitable
constructor found.

4.2 Test Correctness
We executed each test that were compilable after our automated

fix. We considered a unit test to be correct if it had a success rate

of 100% (i.e., all of its test methods passed) whereas a somewhat
correct unit test is one that had at least one passing test method.

As explained in Section 3.1.3, the reasoning behind these metrics is

that the HumanEval has a canonical solution which is the correct
implementation for the problem. Thus, a correct test must not fail

(or else the input/output generated does not match the benchmark’s

problem). Similarly, as the SF110 benchmark is a popular bench-

mark for automatic test generation containing mature open-source

projects, they have a higher probability that they are functionally

correct. Both metrics are reported in Table 2.

HumanEval Results. StarCoder generated the highest amount of

correct unit tests (≈81%). Although GPT-3.5-Turbo only produced

52% correct unit tests, it was the model that generated the highest

amount of tests that have at at least one passing test method (92.3%).
We also found that increasing Codex’s token size did not yield

higher correctness rates. Moreover, between 52% to 81% of gener-

ated tests were correct whereas 81%-92% of the tests had at least one
passing test case. From these results, we can infer that although all

the models could not produce correct tests, they can still be useful

in generating at least a few viable input/output pairs.

Table 2: Correct tests percentage for HumanEval and SF110
GPT-3.5-Turbo StarCoder Codex (2K) Codex (4K)

H
E % Correct 52.3% 81.3% 77.5% 76.7%

% Somewhat Correct 92.3% 81.3% 87.5% 87.4%

SF
11

0 % Correct 6.9% 51.9% 46.5% 41.1%

% Somewhat Correct 16.1% 58.6% 62.7% 53.7%

SF110 Results. The correctness rates achieved by the LLMs are

rather low. Less than 52% of the produced tests are correct for

all models. Even when considering the unit tests that produced at

least one passing test case (somewhat correct), only up to 63% fulfill

this criterion. The best-performing model for the SF110 dataset was

StarCoder, which produced 51.9% correct tests. Codex (2K) was the

best performing LLM for generating unit tests that have at least one
passing test case.

EASE 2024, 18–21 June, 2024, Salerno, Italy Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat, and Vinícius Carvalho Lopes

4.3 Test Coverage
HumanEval Results. Table 3 shows the line and branch coverage for

the HumanEval dataset, computed considering all the Java classes

in the dataset. The LLMs achieved line coverage ranging from

67% to 87.7% and branch coverage ranging from 69.3% to 92.8%.
Codex (4K) exhibited the highest line and branch coverage of 87.7%
and 92.8%, respectively. However, the coverage of the unit tests
generated by LLMs are below the coverage reported by the manual

tests and those generated by Evosuite. In fact, Evosuite, which relies

on an evolutionary algorithm to generate JUnit tests, has a higher

line and branch coverage than the manually written tests.

Table 3: Line and branch coverage
Metric GPT-3.5-Turbo StarCoder Codex-2K Codex-4K Evosuite Manual

H
um

an
Ev

al Line
Coverage 69.1% 67.0% 87.4% 87.7% 96.1% 88.5%

Branch
Coverage 76.5% 69.3% 92.1% 92.8% 94.3% 93.0%

SF
11

0

Line
Coverage 1.3% 1.1% 1.9% 1.2% 27.5% –

Branch
Coverage 1.6% 0.5% 1.1% 0.7% 20.2% –

SF110 Results. The test coverage for SF110 is worse when com-

pared to HumanEval (they were less than 2% for all models). Codex

(2K) was the best performing one in terms of line coverage (1.9%),
whereas GPT-3.5-Turbo had the highest branch coverage (1.6%).
Yet, these coverages are ≈11-19× lower than the coverage achieved

by Evosuite’s tests.

4.4 Test Smells
HumanEval Results. Table 4 shows that the LLMs produced the fol-

lowing smells
3
: Assertion Roulette (AR) [67],Conditional Logic Test

(CLT) [45], Empty Test (EM) [51], Exception Handling (EH) [51],
Eager Test (EA) [67], Lazy Test (LT) [67], Duplicate Assert (DA) [51],
Unknown Test (UT) [51], , andMagic Number Test (MNT) [45]. We

found that Magic Number Test (MNT) and Lazy Test (LT) are the

two most reoccurring test smell types across all the approaches, i.e.,
in the unit tests generated by the LLMs and Evosuite as well as the

ones created manually. The MNT smell occurs when the unit test

hard-codes a value in an assertion without a comment explaining

it, whereas the LT smell arises when multiple test methods invoke

the same production code.

Table 4: Test smells distribution for the HumanEval dataset.
Test Smell Codex (2K) Codex (4K) StarCoder GPT-3.5-Turbo Evosuite Manual

AR 61.3% 59.7% 51.3% 23.8% 15.0% 0.0%

CLT 0.0% 0.0% 0.0% 1.5% 0.0% 0.0%

EM 1.9% 1.3% 3.8% 0.8% 0.0% 0.0%

EH 0.0% 0.0% 0.0% 0.0% 100.0% 100.0%

EA 60.6% 59.1% 48.8% 23.8% 16.3% 0.0%

LT 39.4% 41.5% 51.3% 86.2% 99.4% 100.0%

DA 15.6% 14.5% 10.6% 3.1% 0.6% 0.0%

UT 10.0% 5.7% 6.3% 0.8% 0.0% 0.0%

MNT 100.0% 100.0% 100% 100.0% 100.0% 100.0%

Whereas Codex, StarCoder, and GPT-3.5-Turbo did not produce

unit tests with the Exception Handling (EH) smell, this smell type

was frequent in all manually created tests and those generated by

Evosuite. We also found that Assertion Roulette (AR) is a common

3
We hide Default Test, General Fixture, Mystery Guest, Verbose Test, Resource Optimism,

Dependent Test, and other test smell types supported by TsDetect because they did

not occur in any of the listed approaches

smell produced by LLMs (frequency between 23.8% – 61.3%) and
that also occurred in Evosuite in 15% of its generated tests. This

smell occurs when the same test method invokes an assert state-

ment to check for different input/output pairs and does not include

an error message for each of these asserts. Similarly, the LLMs and

Evosuite also produced unit tests with the Eager Test smell (EA),
in which a single test method invokes different methods from the

production class, as well as the Duplicate Assert smell (DA) (caused
by multiple assertions for the same input/output pair).

SF110 Results. The smells detected for the SF110 tests are listed in

Table 5. Similar to HumanEval,Magic Number Test (MNT), Asser-
tion Roulette (AR), and Eager Tests (EA) are frequently occurring

smells in the unit tests generated by the LLMs and Evosuite. The

LLMs generated other types of smells that were not observed for

the HumanEval dataset, namely Constructor Initialization (CI) [51],
Mistery Guest (MG) [67], Redundant Print (RP) [51], Redundant As-
sertion (RA) [51], Sensitive Equality (SE) [67], Ignored Test (IT) [51],
and Resource Optimism (RO) [51].

While LLMs produced tests that had Empty Tests (EM), Redundant
Print (RP), Redundant Assertion (RA), and Constructor Initializa-
tion (CI) smells, Evosuite did not generate any unit test with these

smell types.We also observed that StarCoder generated (proportion-

ally) more samples than the other models (96.7% of its generated

tests had at least one test smell).

Table 5: Test smells distribution for the SF110 dataset (RQ1).
Test Smell GPT-3.5-Turbo StarCoder Codex (2K) Codex (4K) Evosuite

AR 4.6% 35.1% 14.4% 17.1% 35.0%

CLT 2.3% 2.4% 0.5% 1.3% 0.0%

CI 0.0% 4.9% 0.0% 0.7% 0.1%

EM 0.0% 3.8% 7.2% 1.3% 0.0%

EH 2.3% 18.2% 20.7% 19.1% 91.2%

MG 0.0% 3.5% 2.7% 3.3% 3.0%

RP 0.0% 10.6% 4.5% 5.9% 0.0%

RA 0.0% 0.3% 0.9% 0.7% 0.0%

SE 0.0% 1.9% 0.9% 1.3% 13.7%

EA 12.6% 39.7% 28.4% 31.6% 39.6%

LT 21.8% 33.4% 60.8% 60.5% 46.4%

DA 1.1% 11.7% 1.4% 2.0% 1.5%

UT 0.0% 21.2% 21.2% 10.5% 22.9%

IT 0.0% 0.3% 0.0% 0.0% 0.0%

RO 0.0% 4.6% 2.7% 3.9% 2.7%

MNT 21.8% 95.4% 93.2% 96.1% 91.2%

5 RQ2 RESULTS
Similar to RQ1, we investigated how code elements in a context

influence the generated unit tests with respect to their compilation
status, correctness, coverage, and quality.

5.1 Compilation Status
Fig. 1 shows the compilation rates for the HumanEval and SF110

datasets across the different scenarios and LLMs.

43
.1
%

28
.8
% 51
.9
%

2.
5%

70
.0
%

60
.0
%

52
.5
%

45
.6
%

37
.5
%

40
.0
%

40
.6
%

53
.8
%

44
.4
%

52
.5
%

49
.4
%

53
.1
%

81
.3
% 96
.9
%

95
.0
%

73
.8
%

76
.9
%

76
.9
%

76
.9
%

48
.1
%

10
0.
0%

96
.9
%

98
.8
%

96
.3
%

99
.4
%

98
.1
%

99
.4
%

96
.9
%

S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3
GPT-3.5-Turbo StarCoder Codex (2K) Codex (4K)

RQ2: COMPILATION RATES FOR HUMANEVAL

% Compilable % Compilable (after heuristic-based fix)

9.
7% 25

.1
%

27
.7
%

22
.4
%

17
.8
%

12
.7
%

10
.9
%

14
.4
%

8.
5%

4.
4%

3.
2%
24
.6
%

21
.9
%

18
.0
%

5.
1%

4.
9%
30
.2
%

32
.6
%

25
.5
%

6.
8%

85
.9
%

75
.9
%

76
.9
%

75
.7
%

76
.4
%

69
.8
% 99

.3
%

99
.0
%

98
.8
%

89
.5
%

99
.8
%

97
.6
%

98
.8
%

98
.3
%

10
0.
0%

99
.8
%

95
.9
%

97
.3
%

97
.1
%

99
.5
%

S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4

GPT-3.5-Turbo StarCoder Codex (2K) Codex (4K)

RQ2: COMPILATION RATES FOR SF110

% Compilable % Compilable (after heuristic-based fix)

Figure 1: Compilation rates for HumanEval and SF110

Using Large Language Models to Generate JUnit Tests: An Empirical Study EASE 2024, 18–21 June, 2024, Salerno, Italy

HumanEval Results. Scenario 3 (S3) increased the original (S0) com-

pilation rates for Codex (2K and 4K) from 37.5%, and 44.4% to

53.8% and 53.1%, respectively. Although scenario 3 increased the

original compilation rates (blue bars in Fig. 1), these tests have sim-

ilar heuristic-based fix rates. In the case of StarCoder, the original

prompt (S0) was the best in generating compilable code. GPT-3.5-

Turbo, on the other hand, experienced a sharp decrease from 43.1%

to 2.5% for S3. Upon further inspection, we found that scenario 3

triggered GPT-3.5-Turbo 3.5 to include the original class under test

in its entirety, followed by the unit test. This resulted in two pack-

age declarations on the produced output; one was placed in the very

first line (corresponding to the CUT’s package), and the other was

placed after the CUT for the unit test’s package. These duplicated

package declarations lead to compilation errors. These issues were

later fixed by applying the heuristic H3. For the GPT-3.5-Turbo

model, the best-performing context scenario was S2, in which the

prompt does not include sample input/output pairs.

SF110 Results. S2 increased the original (S0) compilation rates for

GPT-3.5-Turbo, StarCoder, and Codex (4K). However, scenario 1

(S1) was the best performer for Codex (2K), while scenario 2 (S2)
was the second-best performer. What these results show is that

it is beneficial to include a minimal context, which contains only

the MUT’s implementation when generating test cases. The ben-

efit seems twofold: (1) it can increase the compilation rate of the

generated code snippets, and (2) it consumes less input tokens, as

other methods from the class under test are removed.

5.2 Test Correctness
Fig. 2 shows the percentage of unit tests generated by the LLMs

that are correct for the HumanEval and SF110 datasets. The best

performing scenarios for an LLM are highlighted in green.

52
.3
%

19
.4
%

16
.7
%
50
.0
% 81

.3
%

28
.9
%

25
.0
%

77
.9
%

77
.5
%

43
.9
%

35
.4
%
71
.4
%

76
.7
%

45
.2
%

37
.1
% 69

.0
%

S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3
GPT-3.5-Turbo StarCoder Codex (2K) Codex (4K)

RQ2: % CORRECT TESTS GENERATED FOR HUMANEVAL

6.
9%

3.
8% 6.
1%

5.
4%

3.
4%

51
.9
%

47
.6
%

47
.4
%

43
.5
%

36
.1
%

46
.5
%

45
.5
%

46
.7
%

49
.5
%

37
.9
%

41
.1
%

42
.4
%

44
.1
%

50
.7
%

37
.0
%

S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4
GPT-3.5-Turbo StarCoder Codex (2K) Codex (4K)

RQ2: % CORRECT TESTS GENERATED FOR SF110

Figure 2: Correctness rates

HumanEval Results. The original context (S0) is the one that leads
to the highest amount of correct tests for the HumanEval dataset.

Among all scenarios, scenario 3 S3) had a similar correctness rate
compared to the original prompt used in RQ1 for GPT-3.5-Turbo

and Codex (2K, 4K). It is important to highlight that whereas GPT-

3.5-Turbo only had 73.8% compilable tests in scenario 3 (compared

to 81.3% tests from the original prompt) it still had a similar correct-

ness rate. Yet, the original prompt is the one that has the highest

correctness rates. Recall that scenario 3 (S3) is the one in which

the implementation of the method under test is not included in the

prompt. These results show that LLMs can still generate unit tests

even if the implementation is not provided. Such a scenario can be

useful in TDD; where developers write tests before the production
code.

• Effects on including input/output examples on the prompt.
The HumanEval dataset has input/output examples in its problem

description (see Listing 2). Thus, for this dataset, we also investi-

gated to what extent LLMs are able to generate unique input/output

pairs that are not included in the original problem description and

how these are related to the test correctness rates observed. We

manually inspected each generated test to compute the total num-
ber of unique input/output pairs generated. For each unique

input/output pair, we compared with the ones provided in the

problem’s description in order to compute the total number of
input-output pairs that are from the problem description and

the total number of input-output pairs that are not in the
problem description.

10 11 11 11 9
13 15

9 9 10 13 12 10 11
17

12
8

S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3

GPT-3.5-Turbo StarCoder Codex (2K) Codex (4K) HE

AVERAGE NUMBER OF UNIQUE INPUT/OUTPUT PAIRS PER
PROMPTS

39
9 13
67

14
62

46
0

21
0 14

92
16
83

55 29
0 14

91 18
90

53
6

37
5 16

13 25
89

65
093

6
15
7

12
9

85
5

94
1

12
3 18
1

65
3

11
90
12
4 95

12
48

11
59

94
99

12
67

S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3
GPT-3.5-Turbo StarCoder Codex (2K) Codex (4K)

DISTRIBUTION OF UNIQUE INPUT/OUTPUT PAIRS PER
SCENARIO AND LLMS FOR HUMANEVAL

unique input/output pairs from the prompt

Figure 3: Left: Average number of unique input/outputs per
prompt for each LLM and the original dataset (HumanEval
- HE). Right: Total number of unique input/outputs that are
and are not from the problem’s description.

Fig. 3 (left) shows the average number of unique input/output pairs

for each LLM and scenario combination compared to the prob-

lem description in the HumanEval dataset. Each problem in the

HumanEval dataset provides an average of 8 input/output pair ex-

amples, whereas the LLMs provide more than that, as the prompts

explicitly request 10 test cases for each problem description. We

observed that the scenarios S1 and S2, which do not include input-

output pairs in the prompt, has a higher average of a number of

unique input-output pairs.

Fig. 3 (right) shows how many of the generated input/output pairs

by the LLMs are from the problem’s description and how many are

not. We found that the scenarios S1 and S2 generated more input-
output pairs that are not from the original description, whereas the

scenarios S0 and S3 are repeating the test cases from the prompt.

That is, the models are behaving like “parrots” [9] by using the

same input/output in the prompt and just formatting it as a test

case without generating new examples. When contrasting with the

correctness rates observed in Fig. 2 we see that scenarios S1 and

S2 were consistently lower for all LLMs. These results show that

although scenarios S1 and S2 generated more input-output exam-

ples, those were not necessarily correct. The prompts that included

examples of input-outputs had higher correctness rates.

SF110 Results. While the original prompt (S0) achieved the highest

correctness rate for GPT-3.5-Turbo (6.9%) and StarCoder (51.9%), the

other LLMs observed a correctness increase when using the context

from scenario 3 (S3). Codex (4K) experienced the highest increase

(from 37.9% to 50.7%) for S3. This scenario (S3) has a context that
only includes the MUT’s Javadoc and signature and removes other

methods from the class where the MUT is declared.

5.3 Test Coverage
Fig. 4 shows the line and branch coverage for each scenario.

EASE 2024, 18–21 June, 2024, Salerno, Italy Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat, and Vinícius Carvalho Lopes
69
.1
%

75
.8
%

83
.9
%

60
.8
%

67
.0
%

58
.1
%

60
.6
%

36
.3
%
87
.4
%

82
.1
%

81
.7
%

81
.4
%

87
.7
%

83
.6
%

81
.7
%

81
.9
%

96
.1
%

88
.5
%

76
.5
%

83
.6
%

89
.3
%

66
.6
%

69
.3
%

56
.5
%

58
.1
%

43
.0
%
92
.1
%

85
.0
%

81
.2
%

86
.1
%

92
.8
%

86
.0
%

80
.9
%

86
.8
%

94
.3
%

93
.0
%

S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3

EV
S

M
N

L

GPT-3.5-Turbo StarCoder Codex (2K) Codex (4K)

RQ2: TEST COVERAGE FOR HUMANEVAL

Line Coverage Branch Coverage

1.
3%

0.
5%

0.
6%

0.
4%

0.
4%

1.
1%

1.
5%

1.
4%

1.
3%

2.
1%

1.
9%

2.
5%

2.
4%

1.
6% 2.
5%

1.
2% 2.
4%

2.
5%

1.
6%

2.
1%

27
.5
%

1.
6%

0.
4%

0.
5%

0.
2%

0.
4%

0.
5%

0.
7%

0.
6%

0.
6%

0.
8%

1.
1%

1.
0%

1.
0%

0.
7%

1.
0%

0.
7%

1.
0%

1.
0%

0.
7%

0.
9%

20
.2
%

S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0
GPT-3.5-Turbo StarCoder Codex (2K) Codex (4K) EVS

RQ2: TEST COVERAGE FOR SF110

Line Coverage (CUT classes only) Branch Coverage (CUT classes only)

Figure 4: Line andBranchCoverage across different datasets,
scenarios, and LLMs (EVS = Evosuite; MNL = Manual).

HumanEval Results. For Codex, scenario 1 is the one that had the

highest line coverage among the different scenarios in these models.

GPT-3.5-Turbo and StarCoder, on the other hand, had scenario 2

as the one with the highest line coverage. With respect to branch
coverage, we found that scenario 3 was the best performing one for

Codex, and scenario 2 is the best one for GPT-3.5-Turbo and Star-

Coder. None of the scenarios for Codex (2K and 4K) and StarCoder

outperformed the line/branch coverage of the original prompts nor

the coverage achieved by the manual and Evosuite’s tests.

SF110 Results. Among all scenarios, scenario 1 (S1) and scenario

2 (S2) had a slightly higher line coverage when compared to the

original prompt (S0) used in RQ1 for Codex (2K) and Codex (4K),

respectively. For StarCoder the scenario 4 had a higher line coverage

than the original one. The original context of GPT-3.5-Turbo, on

the other hand, had the highest observed line coverage. In the case

of branch coverage, scenario 1 (S1) had slightly higher coverage for
Codex (4K), whereas scenario 4 (S4) was the best one for StarCoder.
However, these increases are still much lower than Evosuite’s test

coverage, which achieved ≈ 27% line and branch coverage.

5.4 Test Smells
HumanEval Results. Table 6 shows the distribution of smells for

different scenarios and LLMs. The cells highlighted in green are

those in which the percentage is lower than the original context,

whereas those highlighted in red have a higher percentage than

the original context. In terms of smell types, all scenarios have the

same smell types that occurred in the original prompts (see Table 4).

We also observe that, overall, the scenarios tended to decrease the

incidence of generated smells. When comparing each scenario to

one another, there is no clear outperformer across all the LLMs.

Yet, Scenario 3 for GPT-3.5-Turbo had higher percentages than the

original context, on average. Although the average increases are

not significant (0.6% and 0.2% for these LLMs, respectively).

Table 6: Test smells distribution for the HumanEval dataset.
GPT-3.5-Turbo StarCoder Codex (2K) Codex (4K)
S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

AR 7.1% 11.8% 30.5% 36.9% 36.3% 48.1% 16.8% 38.6% 61.0% 16.6% 40.3% 63.2%

CLT 6.5% 3.3% 0.8% 0.0% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

EM 0.0% 0.7% 3.4% 1.9% 8.1% 3.8% 4.5% 3.2% 1.9% 1.3% 1.3% 1.9%

EA 7.1% 10.5% 26.3% 28.8% 30.0% 48.1% 15.5% 37.3% 56.5% 15.3% 38.4% 58.1%

LT 85.2% 92.8% 82.2% 61.9% 63.8% 53.1% 84.5% 60.8% 44.2% 84.7% 60.4% 42.6%

DA 1.3% 0.0% 1.7% 8.1% 11.3% 11.3% 0.6% 8.2% 11.0% 1.9% 6.9% 11.6%

UT 0.0% 0.7% 3.4% 11.3% 13.8% 6.3% 13.5% 16.5% 2.6% 5.1% 8.2% 2.6%

MNT 89.7% 98.7% 100% 99.4% 99.4% 100% 100% 100% 100% 100% 100% 100%

SF110 Results. As shown Table 7, there is not any scenario that con-

sistently outperforms the other. However, we can observe that sce-

nario 2 for GPT-3.5-Turbo produces more test smells than the other

scenarios, as we can see from the cells highlighted in red.

6 DISCUSSION
– LLMs vs. Evosuite: Across all the studied dimensions, LLMs per-

formed worse than Evosuite. One reason is that LLMs do not always

Table 7: Test smells distribution for the SF110 dataset (RQ2).
Codex (2K) Codex (4K) StarCoder GPT-3.5-Turbo

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4
AR 17.3% 12.8% 12.4% 7.8% 17.5% 13.5% 13.6% 8.3% 23.0% 23.5% 21.4% 27.1% 6.6% 7.8% 4.4% 12.1%

CLT 0.0% 0.5% 0.0% 0.7% 0.0% 0.0% 0.0% 0.8% 1.4% 1.6% 1.4% 1.1% 0.5% 1.7% 1.1% 3.5%

CI 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 1.1% 0.0% 0.0% 0.0% 0.0%

EM 8.2% 5.1% 24.8% 5.9% 7.7% 5.0% 21.6% 5.4% 1.4% 1.6% 2.9% 2.9% 0.0% 0.0% 1.1% 2.1%

EH 14.3% 19.5% 15.3% 24.5% 15.5% 18.5% 14.1% 25.7% 17.2% 22.5% 25.3% 21.5% 2.2% 3.3% 2.7% 5.0%

MG 2.0% 1.5% 1.0% 2.6% 1.0% 1.5% 1.5% 2.5% 2.2% 2.7% 2.4% 2.7% 1.6% 1.1% 1.1% 3.5%

RP 2.0% 2.1% 4.0% 3.0% 1.5% 2.5% 4.0% 2.9% 6.8% 16.5% 14.1% 10.7% 0.0% 0.0% 0.0% 0.7%

RA 1.0% 0.5% 1.0% 1.5% 0.5% 0.5% 1.0% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.7%

SE 1.0% 0.0% 1.5% 1.5% 1.0% 0.5% 1.0% 1.2% 0.6% 0.2% 0.4% 0.9% 0.5% 0.6% 1.1% 2.1%

EA 16.8% 14.4% 11.4% 20.8% 17.0% 13.0% 11.6% 25.3% 24.6% 28.7% 20.8% 35.1% 7.7% 8.3% 6.6% 15.6%

LT 31.6% 44.1% 32.7% 55.8% 33.0% 46.0% 35.2% 57.7% 30.1% 26.0% 27.1% 32.4% 14.2% 16.7% 13.7% 22.0%

DA 6.1% 1.5% 1.5% 1.9% 5.2% 2.5% 2.0% 2.5% 6.4% 4.5% 5.1% 7.2% 2.2% 1.7% 0.5% 2.8%

UT 14.8% 12.3% 30.7% 17.8% 12.9% 10.5% 24.1% 16.6% 17.8% 16.7% 19.4% 20.6% 0.0% 0.0% 1.6% 2.1%

RO 1.5% 1.5% 2.0% 2.2% 1.0% 1.5% 2.5% 2.9% 3.6% 3.3% 3.7% 4.0% 1.6% 1.1% 1.1% 2.8%

MNT 98.5% 98.5% 98.0% 91.8% 97.9% 97.5% 98.5% 95.0% 91.2% 96.9% 99.0% 96.4% 18.6% 21.1% 18.0% 29.1%

produce compilable unit tests (Table 1). For example, while Evosuite

produced one unit test for each of the 160 classes under test, GPT-

3.5-Turbo only produced 130 compilable (i.e., executable) unit tests.
Another reason is that LLMs do not seem to pay attention to the

current MUT’s implementation. A piece of evidence for this is that

scenario 3 (which does not include the MUT’s implementation) has

better compilation rates than the rest. However, we also observed

that GPT-3.5-Turbo generated test cases for “stress-testing”, e.g.,
using Integer.MAX_VALUE to test for the MUT’s behavior in the face

of exceptionally large inputs.

– Codex and StarCoder perform better than GPT-3.5-Turbo.
This can be explained by the fact that Codex and StarCoder are

LLMs fine-tuned for code-related tasks in contrast to GPT-3.5-Turbo,

which is tailored to dialogues (natural language).

–LLMs often “hallucinate” inexistent types,methods, etc. For
both datasets, the most common compilation error was due to

missing symbols. For instance, Codex generated inputs whose type

were Tuple, Pair, Triple, Quad, and Quint, which are non-existent

in Java’s built-in class types.

– Synergy between LLMs and TDD. Although LLMs did not

achieve coverages or compilation rates comparable to Evosuite,

they can still be useful as a starting point for TDD. As we showed

in our RQ2, LLMs can generate tests based on the MUT’s JavaDoc.

However, given the low correctness rates of LLMs, developerswould

still need to adjust the generated tests manually.

Given these findings, we observe a need for future research to

focus on helping LLMs in reason over data types and path feasi-

bility, as well as exploring the combination of SBST and LLMs for

TDD. Furthermore, a recent study [71] surveyed 2,000 developers

and analyzed anonymous user data, showing that GitHub Copilot

makes developers more productive because the generated code

can automate repetitive tasks. Thus, our findings provide some

initial evidence that practitioners following a TDD approach could

benefit from LLM-generated tests as a means to speed up their

testing. Although further user studies would be needed to verify

this hypothesis.

6.1 Threats to Validity
Creating canonical solutions for the Java samples in the HumanEval

dataset [5] introduced an internal validity threat. To mitigate it,

we extensively vetted our solution with a test set provided by the

Using Large Language Models to Generate JUnit Tests: An Empirical Study EASE 2024, 18–21 June, 2024, Salerno, Italy

dataset. Another validity threat relates to the use of the SF110

benchmark [20], JaCoCo [2] for calculating coverage results and

TsDetect [52] to find test smells. In this case, our analyses depend

on the representativeness of the SF110 dataset (construct validity

threat) and the accuracy of these tools. However, the SF110 dataset

is commonly used to benchmark automated test generation tools

[12, 20, 59] and JaCoCo and TsDetect are state-of-the-art tools [10,

68].

7 RELATEDWORK
Previous works have focused on creating source code that can do a

specific task automatically (code generation). The deductive synthe-

sis approach [27, 44], in which the task specification is transformed

into constraints, and the program is extracted after demonstrating

the satisfaction of the constraints, is one of the foundations of pro-

gram synthesis [30]. Recurrent networks were used by Yin et al.
[70] to map text to abstract syntax trees, which were subsequently

coded using attention. A variety of large language learning mod-

els have been made public to generate code (e.g., CodeBert [19],

CodeGen [47] and CodeT5 [69]) after being refined on enormous

code datasets. Later, GitHub Copilot developed an improved auto-

complete mechanism using the upgraded version of Codex [16],

which can help to solve fundamental algorithmic problems [18].

Our work focuses not on code generation but on how a publicly

available code generation tool can be used for specialized tasks

like unit test generation without fine-tuning (i.e., zero-shot test
generation).

Shamshiri et al. [60] proposed a search-based approach that au-

tomatically generates tests that can reveal functionality changes,

given two program versions. On the other hand, Tufano et al. [66]
proposed an approach that aims to generate unit test cases by learn-

ing from real-world focal methods and developer-written test cases.

Pacheco et al. [48] presented a technique that improves random test

generation by incorporating feedback obtained from executing test

inputs as they are created for generating unit tests. Lu et al. [43]
worked on testing autonomous driving systems with reinforcement

learning. Lima et [41] surveyed the practitioners on software test-

ing and refactoring. In our work, we focus on zero-shot unit test

generation using different contexts in order to measure the LLM’s

ability to generate compilable, correct, and smell-free tests.

Schäfer et al. [57] used Codex [16] to automatically generate unit

tests using an adaptive approach. They used 25 npm packages to

evaluate their tool, TESTPILOT. However, they evaluated their

model only on statement coverage. They did not provide insight

into the quality of the generated test cases and the choice of us-

ing a specific prompt structure. Lemieux et al. [38] combined the

Search-based software testing (SBST) technique with the LLM ap-

proach. It explored whether Codex can be used to help SBST’s

exploration. Nashid et al. [46] aimed to devise an effective prompt

to help large language models with different code-related tasks,

i.e., program repair and test assertion generation. Their approach

provided examples of the same task and asked the LLM to gener-

ate code for similar tasks. Li et al. [40] used ChatGPT [1] to find

failure-inducing tests with differential prompting. Bareiß et al. [7]

performed a systematic study to evaluate how a pre-trained lan-

guage model of code, Codex, works with code mutation, test oracle

generation from natural language documentation, and test case

generation using few-shot prompting like Nashid et al. [46]. How-
ever, the benchmark has only 32 classes, so the findings may not be

generalized. This work provides direction toward using examples

of usage or similar tasks as a context. However, in a real case, there

may not be any example of using the method and class that can be

used in the prompt, and creating an example of a similar task needs

human involvement. Our work focused on different contexts taken

from the code base. We evaluated the quality of the generated unit

tests not only on coverage and correctness but also based on the

presence of test smells.

8 CONCLUSION
We studied the capability of three code generation LLMs for unit test

generation. We conducted experiments with different contexts in

the prompt and compared the results based on compilation rate, test

correctness, coverage, and test smells. These models have a close

performance with the state-of-the-art test generation tool for the

HumanEval dataset, but their performance is poor for open-source

projects from Evosuite based on coverage. Though our developed

heuristics can improve the compilation rate, several generated tests

were not compilable. Moreover, they heavily suffer from test smells

like Assertion Roulette and Magic Number Test. In future work,

we will explore how to enhance LLMs to understand language se-

mantics better in order to increase test correctness and compilation

rates.

REFERENCES
[1] 2023. Chat completions. Accessed Mar 25, 2023. https://platform.openai.com/

docs/guides/chat

[2] 2023. JaCoCo - Java Code Coverage Library. https://www.jacoco.org/jacoco/

trunk/index.html [Online; accessed 30. Mar. 2023].

[3] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. 2018. A survey of machine

learning for big code and naturalness. ACM Computing Surveys (CSUR) 51, 4
(2018), 1–37.

[4] Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, ..., and

Bing Xiang. 2022. Multi-lingual Evaluation of Code Generation Models. (2022).

[5] B. Athiwaratkun, S. K. Gouda, Z. Wang, X. Li, et al. 2022. Multi-lingual Evaluation

of Code Generation Models.

[6] A. Bacchelli, P. Ciancarini, and D. Rossi. 2008. On the effectiveness of manual

and automatic unit test generation. In 2008 The Third Int’l Conf. on Software
Engineering Advances. IEEE, 252–257.

[7] P. Bareiß, B. Souza, M. d’Amorim, and M. Pradel. 2022. Code generation tools

(almost) for free? a study of few-shot, pre-trained language models on code. arXiv
preprint arXiv:2206.01335 (2022).

[8] K. Beck. 2003. Test-driven development: by example. Addison-Wesley Professional.

[9] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. 2021. On the

dangers of stochastic parrots: Can language models be too big?. In Proc’d. of the
2021 ACM Conf. on fairness, accountability, and transparency. 610–623.

[10] I. Bilal, I. Al-Taharwa, S. Rami, I. M. Alkhawaldeh, and N. Ghatasheh. 2021.

JaCoCo-Coverage Based Statistical Approach for Ranking and Selecting Key

Classes in Object-Oriented Software. J. Eng. Sci. Technol 16 (2021), 3358–3386.
[11] T. Brown, B. Mann, N. Ryder, M. Subbiah, et al. 2020. Language Models are Few-

Shot Learners. InAdvances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,

Inc., 1877–1901.

[12] D. Bruce, H. D. Menéndez, and D. Clark. 2019. Dorylus: An ant colony based

tool for automated test case generation. In Search-Based Software Engineering:
11th Int’l Symposium, SSBSE 2019, Tallinn, Estonia, August 31–September 1, 2019,
Proc’d. 11. Springer, 171–180.

[13] J. Campos, A. Arcuri, G. Fraser, and R. Abreu. 2014. Continuous test generation:

Enhancing continuous integration with automated test generation. In Proc’d. of
the 29th ACM/IEEE inter’l Conf. on Automated software engineering. 55–66.

https://platform.openai.com/docs/guides/chat
https://platform.openai.com/docs/guides/chat
https://www.jacoco.org/jacoco/trunk/index.html
https://www.jacoco.org/jacoco/trunk/index.html

EASE 2024, 18–21 June, 2024, Salerno, Italy Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat, and Vinícius Carvalho Lopes

[14] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-

Costin, Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,

Molly Q Feldman, et al. 2023. MultiPL-E: a scalable and polyglot approach to

benchmarking neural code generation. IEEE Transactions on Software Engineering
(2023).

[15] B. Chen, F. Zhang, A. Nguyen, D. Zan, Z. Lin, J.-G. Lou, andW. Chen. 2022. Codet:

Code generation with generated tests. arXiv preprint arXiv:2207.10397 (2022).

[16] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, et al. 2021. Evaluating

Large Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[17] Ermira Daka, José Campos, G. Fraser, Jonathan Dorn, and Westley Weimer. 2015.

Modeling readability to improve unit tests. Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (2015). https://doi.org/10.1145/

2786805.2786838

[18] A. M. Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh, M. C. Desmarais, Z. Ming,

et al. 2022. GitHub Copilot AI pair programmer: Asset or Liability? arXiv preprint
arXiv:2206.15331 (2022).

[19] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D.

Jiang, and M. Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and

Natural Languages. In Findings of the Association for Computational Linguistics:
EMNLP 2020. Association for Computational Linguistics, Online, 1536–1547.

[20] G. Fraser and A. Arcuri. 2011. EvoSuite: Automatic Test Suite Generation for

Object-Oriented Software. In Proc’d. of the 19th ACM SIGSOFT Symposium and the
13th European Conf. on Foundations of Software Engineering (Szeged, Hungary)

(ESEC/FSE ’11). Association for Computing Machinery, New York, NY, USA,

416–419.

[21] G. Fraser and A. Arcuri. 2012. Sound Empirical Evidence in Software Testing.

In 34th Int’l Conf. on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich,
Switzerland. IEEE, 178–188.

[22] G. Fraser and A. Arcuri. 2014. A Large Scale Evaluation of Automated Unit

Test Generation Using EvoSuite. ACM Transactions on Software Engineering and
Methodology (TOSEM) 24, 2 (2014), 8.

[23] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. 2015.

Does automated unit test generation really help software testers? a controlled

empirical study. ACM Transactions on Software Engineering and Methodology
(TOSEM) 24, 4 (2015), 1–49.

[24] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong, W. t. Yih, L.

Zettlemoyer, and M. Lewis. 2022. InCoder: A Generative Model for Code Infilling

and Synthesis. CoRR abs/2204.05999 (2022).

[25] Y. Gao and C. Lyu. 2022. M2TS: Multi-Scale Multi-Modal Approach Based on

Transformer for Source Code Summarization. arXiv preprint arXiv:2203.09707
(2022).

[26] D. Gonzalez, J. C. S. Santos, A. Popovich, M. Mirakhorli, and M. Nagappan. 2017.

A large-scale study on the usage of testing patterns that address maintainability

attributes: patterns for ease of modification, diagnoses, and comprehension. In

2017 IEEE/ACM 14th Int’l Conf. on Mining Software Repositories (MSR). IEEE,
391–401.

[27] C. Green. 1969. Application of Theorem Proving to Problem Solving. In Proc’d.
of the 1st Int’l Joint Conf. on Artificial Intelligence (Washington, DC) (IJCAI’69).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 219–239.

[28] M. Greiler, A. Zaidman, A. van Deursen, and M.-A. Storey. 2013. Strategies for

Avoiding Text Fixture Smells during Software Evolution. In Proc’d. of the 10th
Working Conf. on Mining Software Repositories (San Francisco, CA, USA) (MSR
’13). IEEE Press, 387–396.

[29] E. M. Guerra and C. T. Fernandes. 2007. Refactoring Test Code Safely. In Int’l
Conf. on Software Engineering Advances (ICSEA 2007). 44–44.

[30] S. Gulwani, O. Polozov, R. Singh, et al. 2017. Program synthesis. Foundations and
Trends® in Programming Languages 4, 1-2 (2017), 1–119.

[31] M. A. Hadi, I. N. B. Yusuf, F. Thung, K. G. Luong, J. Lingxiao, F. H. Fard, and D.

Lo. 2022. On the Effectiveness of Pretrained Models for API Learning. In Proc’d.
of the 30th IEEE/ACM Int’l Conf. on Program Comprehension (Virtual Event) (ICPC
’22). ACM, New York, NY, USA, 309–320.

[32] M. Hilton, J. Bell, and D. Marinov. 2018. A Large-Scale Study of Test Coverage

Evolution. In Proc’d. of the 33rd ACM/IEEE Int’l Conf. on Automated Software
Engineering (Montpellier, France) (ASE 2018). ACM, New York, NY, USA, 53–63.

[33] M. Ivanković, G. Petrović, R. Just, and G. Fraser. 2019. Code Coverage at Google.

In Proc’d. of the 2019 27th ACM Joint Meeting on European Software Engineering
Conf. and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). ACM, New York, NY, USA, 955–963.

[34] M. Izadi, R. Gismondi, and G. Gousios. 2022. CodeFill: Multi-token Code Com-

pletion by Jointly Learning from Structure and Naming Sequences. In 44th Int’l
Conference on Software Engineering (ICSE).

[35] S. Kim, J. Zhao, Y. Tian, and S. Chandra. 2021. Code prediction by feeding trees

to transformers. In 2021 IEEE/ACM 43rd Int’l Conf. on Software Engineering (ICSE).
IEEE, 150–162.

[36] P S Kochhar, F Thung, N Nagappan, T Zimmermann, and D Lo. 2015. Understand-

ing the test automation culture of app developers. In 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST). IEEE, 1–10.

[37] T. Koomen and M. Pol. 1999. Test Process Improvement: A Practical Step-by-Step
Guide to Structured Testing. Addison-Wesley Longman Publishing Co., Inc., USA.

[38] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen. 2023. CODAMOSA: Escaping

Coverage Plateaus in Test Generation with Pre-trained Large Language Models.

In 45th Int’l Conf. on Software Engineering, ser. ICSE.
[39] R. Li, L. Ben allal, Y. Zi, N. Muennighoff, D. Kocetkov, ..., and H. de Vries. 2023.

StarCoder: may the source be with you! Transactions on Machine Learning
Research (2023). Reproducibility Certification.

[40] T.-O. Li, W. Zong, Y. Wang, H. Tian, Y. Wang, S.-C. Cheung, and J. Kramer. 2023.

Nuances are the Key: Unlocking ChatGPT to Find Failure-Inducing Tests with

Differential Prompting. In 2023 38th IEEE/ACM Int’l Conf. on Automated Software
Engineering (ASE). IEEE, 14–26.

[41] D. L. Lima, R. De Souza Santos, G. P. Garcia, S. S. Da Silva, C. França, and

L. F. Capretz. 2023. Software Testing and Code Refactoring: A Survey with

Practitioners. In 2023 IEEE Int’l Conf. on Software Maintenance and Evolution
(ICSME). 500–507.

[42] S. P. Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28

(1982), 129–136.

[43] C Lu, T Yue, M Zhang, and S Ali. 2023. DeepQTest: Testing Autonomous Driving

Systems with Reinforcement Learning and Real-world Weather Data. ACM
Transactions on Software Engineering and Methodology (2023).

[44] Z. Manna and R. J. Waldinger. 1971. Toward Automatic Program Synthesis.

Commun. ACM 14, 3 (mar 1971), 151–165.

[45] G. Meszaros, S. M. Smith, and J. Andrea. 2003. The Test Automation Manifesto.

In Extreme Programming and Agile Methods - XP/Agile Universe 2003, F. Maurer

and D. Wells (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 73–81.

[46] N. Nashid, M. Sintaha, and A. Mesbah. 2023. Retrieval-Based Prompt Selection

for Code-Related Few-Shot Learning. ICSE23 (2023).
[47] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C.

Xiong. 2022. A Conversational Paradigm for Program Synthesis. arXiv preprint
(2022).

[48] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. 2007. Feedback-directed random

test generation. In 29th Int’l Conf. on Software Engineering (ICSE’07). IEEE, 75–84.
[49] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia. 2016. On the

Diffusion of Test Smells in Automatically Generated Test Code: An Empirical

Study. In 2016 IEEE/ACM 9th Int’l Workshop on Search-Based Software Testing
(SBST). 5–14.

[50] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri. 2022. Asleep at the

Keyboard? Assessing the Security of GitHub Copilot’s Code Contributions. In

2022 2022 IEEE Symposium on Security and Privacy (SP) (SP). IEEE Computer

Society, Los Alamitos, CA, USA, 980–994.

[51] A. Peruma, K. Almalki, C. D. Newman, M. Wiem Mkaouer, A. Ouni, and F.

Palomba. 2019. On the Distribution of Test Smells in Open Source Android

Applications: An Exploratory Study. In Proc’d. of the 29th Annual Int’l Conf. on
Computer Science and Software Engineering (Toronto, Ontario, Canada) (CASCON
’19). IBM Corp., USA, 193–202.

[52] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and F. Palomba.

2020. TsDetect: An Open Source Test Smells Detection Tool. In Proc’d. of the 28th
ACM Joint Meeting on European Software Engineering Conf. and Symposium on
the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020).
Association for Computing Machinery, New York, NY, USA, 1650–1654.

[53] J. A. Prenner, H. Babii, and R. Robbes. 2022. Can OpenAI’s Codex Fix Bugs?: An

evaluation on QuixBugs. In 2022 IEEE/ACM Int’l Workshop on Automated Program
Repair (APR). 69–75.

[54] P. J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53–65.
[55] P. Runeson. 2006. A survey of unit testing practices. IEEE software 23, 4 (2006),

22–29.

[56] J. Savelka, A. Agarwal, C. Bogart, Y. Song, and M. Sakr. 2023. Can Generative Pre-

Trained Transformers (GPT) Pass Assessments in Higher Education Programming

Courses?. In Proc’d. of the 2023 Conf. on Innovation and Technology in Computer
Science Education V. 1 (Turku, Finland) (ITiCSE 2023). ACM, New York, NY, USA,

117–123.

[57] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip. 2023. Adaptive Test Generation Using

a Large Language Model. arXiv preprint arXiv:2302.06527 (2023).

[58] D. Serra, G. Grano, F. Palomba, F. Ferrucci, H. C. Gall, and A. Bacchelli. 2019. On

the effectiveness of manual and automatic unit test generation: ten years later.

In 2019 IEEE/ACM 16th Int’l Conf. on Mining Software Repositories (MSR). IEEE,
121–125.

[59] M. M. D. Shahabi, S. P. Badiei, S. E. Beheshtian, R. Akbari, and S. M. R. Moosavi.

2017. On the performance of EvoPSO: A PSO based algorithm for test data

generation in EvoSuite. In 2017 2nd Conf. on Swarm Intelligence and Evolutionary
Computation (CSIEC). IEEE, 129–134.

[60] S. Shamshiri, J. M. Rojas, J. P. Galeotti, N. Walkinshaw, and G. Fraser. 2018. How

Do Automatically Generated Unit Tests Influence Software Maintenance?. In

2018 IEEE 11th Int’l Conf. on Software Testing, Verification and Validation (ICST).
250–261.

https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/2786805.2786838
https://doi.org/10.1145/2786805.2786838

Using Large Language Models to Generate JUnit Tests: An Empirical Study EASE 2024, 18–21 June, 2024, Salerno, Italy

[61] Inbal Shani. 2023. Survey reveals AI’s impact on the developer experience | The
GitHub Blog. GitHub Blog (June 2023). https://github.blog/2023-06-13-survey-

reveals-ais-impact-on-the-developer-experience/#methodology

[62] M. L. Siddiq, S. H. Majumder, M. R. Mim, S. Jajodia, and J. C. S. Santos. 2022.

An Empirical Study of Code Smells in Transformer-based Code Generation

Techniques. In 2022 IEEE 22nd Int’l Working Conf. on Source Code Analysis and
Manipulation (SCAM). 71–82.

[63] M. L. Siddiq, A. Samee, S. R. Azgor, M. A. Haider, S. I. Sawraz, and J. C. S. Santos.

2023. Zero-shot Prompting for Code Complexity Prediction Using GitHub Copilot.

In 2023 The 2nd Intl. Workshop on NL-based Software Engineering.
[64] A. Svyatkovskiy, S. Lee, A. Hadjitofi, M. Riechert, J. Franco, and M. Allamanis.

2021. Fast and memory-efficient neural code completion. In 2021 IEEE/ACM 18th
Int’l Conf. on Mining Software Repositories (MSR). IEEE, 329–340.

[65] Dave A. Thomas and A. Hunt. 2002. Mock Objects. IEEE Softw. 19 (2002), 22–24.
https://doi.org/10.1109/MS.2002.1003449

[66] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sundaresan. 2020.

Unit test case generation with transformers and focal context. arXiv preprint
arXiv:2009.05617 (2020).

[67] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok. 2001. Refactoring Test

Code. In Proc’d. 2nd Int’l Conf. on Extreme Programming and Flexible Processes in
Software Engineering (XP2001), M. Marchesi and G. Succi (Eds.).

[68] T. Virgínio, L. Martins, R. Santana, A. Cruz, L. Rocha, H. Costa, and I. Machado.

2021. On the test smells detection: an empirical study on the JNose test accuracy.

Journal of Software Engineering Research and Development 9 (2021), 8–1.
[69] Y.Wang,W.Wang, S. Joty, and S. C.H. Hoi. 2021. CodeT5: Identifier-aware Unified

Pre-trained Encoder-Decoder Models for Code Understanding and Generation.

In Proc’d. of the 2021 Conf. on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Online and Punta Cana, Dominican

Republic, 8696–8708.

[70] P. Yin and G. Neubig. 2017. A Syntactic Neural Model for General-Purpose

Code Generation. In Proc’d. of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational

Linguistics, Vancouver, Canada, 440–450.

[71] A. Ziegler, E. Kalliamvakou, X. A. Li, A. Rice, D. Rifkin, S. Simister, G. Sittampalam,

and E. Aftandilian. 2022. Productivity Assessment of Neural Code Completion.

In Proc’d. of the 6th ACM SIGPLAN Int’l Symposium on Machine Programming
(San Diego, CA, USA) (MAPS 2022). ACM, New York, NY, USA, 21–29.

https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/#methodology
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/#methodology
https://doi.org/10.1109/MS.2002.1003449

	Abstract
	1 Introduction
	2 Background
	2.1 Unit Tests & Test Smells
	2.2 Code Generation

	3 Methodology
	3.1 Answering RQ1
	3.2 RQ2: Code Elements in a Context

	4 RQ1 Results
	4.1 Compilation Status
	4.2 Test Correctness
	4.3 Test Coverage
	4.4 Test Smells

	5 RQ2 Results
	5.1 Compilation Status
	5.2 Test Correctness
	5.3 Test Coverage
	5.4 Test Smells

	6 Discussion
	6.1 Threats to Validity

	7 Related Work
	8 Conclusion
	References

