
Preprint version

Automated Training-Set Creation for Software Architecture
Traceability Problem

Waleed Zogaan · Ibrahim Mujhid · Joanna C. S.
Santos · Danielle Gonzalez · Mehdi Mirakhorli

Abstract Automated trace retrieval methods based on machine-learning algorithms can significantly
reduce the cost and effort needed to create and maintain traceability links between requirements, ar-
chitecture and source code. However, there is always an upfront cost to train such algorithms to detect
relevant architectural information for each quality attribute in the code. In practice, training supervised
or semi-supervised algorithms requires the expert to collect several code snippets of architectural tactics
that implement a quality requirement and train a learning method. Establishing such training set can
take weeks to months to complete. Furthermore, the effectiveness of this approach is largely dependent
upon the knowledge of the expert. In this paper, we present three baseline approaches for the creation
of training data. These approaches are (i) Manual Expert-Based, (ii) Automated Web-Mining, which
generates training sets by automatically mining tactic’s APIs from technical programming websites, and
lastly (iii) Automated Big-Data Analysis, which mines ultra-large scale code repositories to generate
training sets. We compare the trace-link creation accuracy achieved using each of these three baseline
approaches and discuss the costs and benefits associated with them. Additionally, in a separate study, we
investigate the impact of training set size on the accuracy of recovering trace links. The results indicate
that automated techniques can create a reliable training set for the problem of tracing architectural
tactics. Our analysis also indicate that these automated techniques can be used in the other areas of
software traceability.

W. Zogaan
Software Engineering Department
Rochester Institute of Technology
Rochester, NY, USA
E-mail: waz7355@rit.edu

I. Mujhid
E-mail: ijm9654@rit.edu

J. C. S. Santos
E-mail: jds5109@rit.edu

D. Gonzalez
E-mail: dng2551@rit.edu

M. Mirakhorli
E-mail: mehdi@se.rit.edu



Preprint version Waleed Zogaan et. al.

Keywords Architecture Traceability · Dataset Generation · Architecturally Significant Requirements ·
Automation

1 Introduction

Software architecture design is the first and the fundamental step towards addressing non-functional
requirements such as security, privacy, safety, reliability, and performance [8]. To satisfy such requirements
an architect must consider alternate design solutions, evaluate their trade-offs, identify the risks and select
the best solution [8]. Such design decisions are often based on well-known architectural tactics [7], defined
as reusable techniques for achieving specific quality concerns. Tactics come in many different shapes and
sizes [7,8]. For example, reliability tactics provide solutions for fault mitigation, detection, and recovery;
performance tactics provide solutions for resource contention in order to optimize response time and
throughput, and security tactics provide solutions for authorization, authentication, non-repudiation
and other such factors.

Establishing round-trip traceability between quality attributes, architectural tactics, design ratio-
nales, and relevant areas of the code, support several software engineering activities. Some of these
activities include architecture level change impact analysis, design reasoning, requirements validation,
safety-case construction, and long-term system maintenance [26, 30]. For instance, practice has shown
that erosion of architecture and architectural qualities often occurs when developers make changes to
the code without fully understanding the underlying architectural decisions and their associated quality
concerns [27, 30]. However if trace links are available, they can be used to keep developers informed of
underlying architectural decisions in order to reduce the likelihood of undermining previous design deci-
sions [28]. It is particularly important to trace architectural decisions in safety-critical systems as these
decisions often contribute towards mitigating potential risks and ensuring that the system will operate
safely and will meet reliability, availability and dependability requirements. [12].

In prior work we proposed Archie [25,28,30], an automated technique based on a data mining approach
to trace quality requirements through architectural tactics to source code. Archie included a set of code-
based classifiers constructed to detect different architectural tactics in the source code [25, 30]. Archie’s
individual classifiers have been trained to detect audit, asynchronous method invocation, authentication,
checkpoint, heartbeat, role-based access control (RBAC), resource pooling, scheduler, and secure session
tactics. The classifiers were trained using code snippets of different architectural tactics collected from
hundreds of high-performance, open source projects.

While the results were promising [25, 30], we observed that extending this approach to a larger
number of tactics requires significant involvement of experts to create new training-sets. This prevents
the technique from being practically applied in an industrial traceability setting. This is a significant
barrier for software architecture traceability and software traceability in general.

Collecting tactical code snippets from real systems requires a deep understanding of quality attributes
and architectural tactics, as well as how these tactics can be implemented. This can be challenging if
students or less experienced developers are involved in establishing the training set. Furthermore, even
when experts (e.g. architects) are involved in the process of creating such datasets, the process is very
time consuming as they need to search across various systems, understand their code snippets and select
those which are the best representative of the tactics. As a result of such barriers, the community is
conducting research using very small, student-generated datasets or limited industrial datasets which are
not shareable, impacting both generalizability and reproducibility of research results.

2



Preprint version Waleed Zogaan et. al.

1.1 Contribution

In this paper we present an empirical study and novel techniques that advances our previous work as well
as of future software traceability research in several important ways. We first develop new approaches
based on (i) Web-Mining and (ii) Big-Data Analysis to automate the creation of traceability dataset.
Web-Mining technique generates training sets by automatically mining tactic’s APIs from technical
programming websites. In contrast, Big-Data Analysis technique uses an ultra-large scale code repository
established in this work to automatically generate quality training sets. The code repository we have
established for this paper, contains over 116,000 open source projects.

As the second contribution, we report a series of empirical studies conducted to compare the accuracy
of a traceability technique trained using the automatically generated training-sets versus the datasets
which are manually established by the experts.

As the third contribution, we provide an on-line tool called BUDGET (available on-line1) that im-
plements our automated approaches. BUDGET enables the traceability researchers to mine software
repositories of 22 million source files to create training sets. BUDGET also implements several data
sampling techniques.

Along with development of novel techniques, we report the results of empirical studies designed to
investigate the following research questions:

Research Question 1: Does the Training Method Based on Automated-Web Mining Result in
Higher Trace-Links Classification Accuracy Compared to Expert Created Training Set?

Through a set of experiments reported in section 4 we investigated this research question. Our em-
pirical analysis indicates that the web-mining approach presented in this paper, produces high quality
training set. The accuracy of trace-link classifier trained using the web-mining approach is comparable to
the classifier trained using expert-created dataset. The statistical analysis shows that the differences are
not statistically significant. This finding can expand the current state of software architecture traceability,
by facilitating the creation of training data through use of our proposed automated technique.

Research Question 2: Does the Training Method Based on Automated Big-Data Analysis Result
in Higher Trace-Links Classification Accuracy Compared to Expert Created Training Set?

The results of our empirical study indicate that the proposed novel Big-Data Analysis approach
creates high quality training-set. The accuracy of trace-link classifier trained using the Big-Data Analysis
approach in three experiments out of five was better than an the classifier trained using expert-created
dataset. The differences between the accuracy of these two training methods is not statistically significant.
Therefore the Big-Data Analysis approach can be used to help researchers create high quality datasets of
architectural code snippets. Manually creating such dataset is very time consuming and our automated
technique provides a significant reduction in training set creation time

Research Question 3: What is the Impact of Training Set Size on the Accuracy of Trace Link
Classification?

1 http://design.se.rit.edu/budget/

3



Preprint version Waleed Zogaan et. al.

Through this research question we aim to perform a cost-benefit analysis for the cases were the
training-set is established manually by experts. The goal is to investigate whether it is worth the effort
to manually create large training set with the hope of achieving higher accuracy. In an experiment we
compared the trace link classification accuracy of a classifier trained using 10, 20, 30, 40 and 50 projects.
The results indicate that there is not a significant difference in the accuracy of the classifier for different
training set sizes.

Research Question 4: Can Automated Training-Set Creation Approaches Be Applied to the Other
Traceability Scenarios?

While we used our automated dataset generation techniques for creating training set in the software
architecture traceability domain, it can be applied in other domains as well. To investigate that, we ran a
feasibility study which, while not the main contribution of this paper, highlights the directions for future
work in similar research area.

1.2 Originality and Extension

This work differs from our previous ICSE 2012 and TSE 2015 publications in different ways. In those
papers [24, 30] we proposed the original classification technique used to trace architectural tactics in
the source code. In this paper we recognize training set creation as a problem in supervised software
traceability approaches including our previous architecture traceability technique. Then we present novel
Web-Mining and Big-Data analysis techniques which can help software traceability researchers in estab-
lishing training sets. In a series of experiment we evaluate the accuracy of automated dataset generation
techniques.

1.3 Organization of the Paper

The reminder of this paper is organized as following: Section 2 provides the background for the architec-
ture traceability problem and the related work in the area of automated dataset creation. In section 3
and 4 we present the overview of the three training set creation techniques and then present the results
of our comparison study. We also study the impact of training-set size on accuracy of creating trace links
in section 6. Section 7 provides additional usage scenarios where the proposed automated techniques can
be used. Section 8 briefly present our tool BUDGET. Section 9 discusses the steps toward reproducibility
of the results, while section 10 discusses threats to validity. Finally, we present conclusions and future
work in Section 11.

2 Background

This section provides the background for the problem of architecture traceability. It summarizes the
related work in the area of automated dataset creation and dataset augmentation.

4



Preprint version Waleed Zogaan et. al.

2.1 Architectural Tactics

Tactics serve as a building block of software architecture and are used to satisfy a specific quality. A
formal definition of tactics is provided by Bachman et al. [7] who define a tactic as a “means of satisfying
a quality-attribute-response measure by manipulating some aspects of a quality attribute model through
architectural design decisions”.

We limited the focus of this work to five tactics: heartbeat, scheduling, resource pooling, authentica-
tion, and audit trail. These were selected because they represent a variety of reliability, performance, and
security requirements. They are defined as follows [8]:

– Heartbeat: A reliability tactic for fault detection, in which one component (sender) emits a periodic
heartbeat message while another component listens for the message (receiver). The original component
is assumed to have failed when the sender stops sending heartbeat messages. In this situation, a fault
correction component is notified.

– Scheduling: Resource contentions are managed through scheduling policies such as FIFO (First in
first out), fixed-priority, and dynamic priority scheduling.

– Resource pooling: Limited resources are shared between clients that do not need exclusive and
continual access to a resource. Pooling is typically used for sharing threads, database connections,
sockets, and other such resources. This tactic is used to achieve performance goals.

– Authentication: Ensures that a user or a remote system is who it claims to be. Authentication is
often achieved through passwords, digital certificates, or biometric scans.

– Audit trail: A copy of each transaction and associated identifying information is maintained. This
audit information can be used to recreate the actions of an attacker, and to support functions such
as system recovery and nonrepudiation.

In the following subsection we present a classification-based approach for tracing architectural tactics
in the source code. Through the rest of the paper, we train this classifier using datasets generated by
different training set creation techniques and compare the accuracy of generated trace links.

2.2 Traceability Challenge: Identifying Tactic-Related Classes

In previous work [25, 30] we presented a novel approach for tracing architecturally significant concerns,
specifically those which are implemented through the use of common architectural tactics. As a tactic is
not dependent upon a specific structural format, we cannot use structural analysis as the primary means
of identification. Our approach therefore relied primarily on information-retrieval (IR) and machine
learning techniques to train a classifier to recognize specific terms that occur commonly across imple-
mented tactics. The tactic-classifier was used to identify all classes related to a given tactic, and then
establishes tactic-level traceability to the driving quality requirements and design rationales [27]. The
classifier includes three phases of preparation, training, and classification which are defined as follows:

Data Preparation Phase: All data is preprocessed using standard information retrieval techniques
(stemming, stop terms removal, etc), and are represented as a vector of terms.

Training Phase: The training phase takes a set of preclassified code segments as input, and produces
a set of indicator terms that are considered to be representative of each tactic type. For example, a term
such as priority is found more commonly in code related to the scheduling tactic than in other kinds of
code, and therefore receives a higher weighting with respect to that tactic.

5



Preprint version Waleed Zogaan et. al.

More formally, let q be a specific tactic such as heart beat. Indicator terms of type q are mined by
considering the set Sq of all classes that are related to tactic q. The cardinality of Sq is defined as Nq.
Each term t is assigned a weight score Prq(t) that corresponds to the probability that a particular term
t identifies a class associated with tactic q. The frequency freq(cq, t) of term t in a class description c
related with tactic q, is computed for each tactic description in Sq. Prq(t) is then computed as:

Prq(t) =
1

Nq

∑
cq∈Sq

freq(cq, t)

|cq|
∗ Nq(t)

N(t)
∗ NPq(t)

NPq
(1)

Classification Phase: During the classification phase, the indicator terms computed in Equation 1
are used to evaluate the likelihood (Prq(c)) that a given class c is associated with the tactic q. Let Iq be
the set of indicator terms for tactic q identified during the training phase. The classification score that
class c is associated with tactic q is then defined as follows:

Prq(c) =

∑
t∈c∩Iq

Prq(t)∑
t∈Iq

Prq(t)
(2)

where the numerator is computed as the sum of the term weights of all type q indicator terms that are
contained in c, and the denominator is the sum of the term weights for all type q indicator terms. The
probabilistic classifier for a given type q will assign a higher score Prq(c) to class c that contains several
strong indicator terms for q.

2.3 Related Work on Dataset Creation/Augmentation

There have been many works in the area of data mining and information retrieval to facilitate training set
selection in text classification problems. However, the fundamental assumptions in this line of research
is that a large number of labelled data points exists and these approaches try to incorporate various
sampling [33, 35], instance selection [10, 11, 17] and data reduction techniques [31, 35] to obtain a small
representative sample. Unlike these approaches, we do not make such assumption and the main problem
in the area of software traceability is the lack of any labeled data.

Web-mining has been previously used in the area of requirements traceability, for example, Jane
Cleland-Huang et.al. [19] have used web-mining to replace a hard to retrieve query with an augmented
query obtained from the web. This work does not focus on creating dataset; it is about expanding the
terms in a requirements with more domain specific terms, so it can be better detected by traceability
techniques. In contrast, our approach is designed to create code based training set for architectural
tactics. Similarly Anas Mahmoud [22] have used query augmentation techniques based on text clustering
to classify non-functional requirements. In this approach the terms in the specification of non-functional
requirements are augmented with the semantically similar terms extracted from the content of Wikipedia.

Recently there have been a number of projects in the area of mining ultra-large-scale open source
software repositories [16,36], these works primarily focus on studying source code and coding issues. There
is a limited experimental research on using such resource to generate scientific datasets, particularly for
requirements and architecture research. To the best of our knowledge there is no concrete automated
technique to help scientist generate their datasets.

Several independent software engineering communities are providing mechanisms for publishing and
sharing datasets. Mining Software Repositories (MSR) conference holds a Data Track every year where
researchers can publish and share their dataset, Center of Excellence for Software Traceability holds

6



Preprint version Waleed Zogaan et. al.

traceability challenges where researchers can share their datasets related to a software traceability chal-
lenge. Most works published on these repositories are based on manually created datasets [21]. In our
work, we utilize massive amount of public data on the web and large scale software repositories and
provide required automation to create high quality datasets.

3 Overview of the Three Baseline Techniques

As previously stated, this paper presents novel automated techniques to create training sets for the
problem of tracing architectural tactics. These automated techniques are designed to create software
traceability datasets with little or no upfront cost while achieving similar (or better) quality than datasets
established by experts.

The proposed automated training set creation techniques as well as the traditional expert-based
approach are illustrated in Figure 1. In case of Manual Expert-Based approach, architects collect, review
and refine the training set. In the case of automated techniques, a description of the tactic from textbooks
(or a set of tactic related terms) can be used as a search query. Then, in each approach, advanced searching
and filtering techniques are used to identify API descriptions or actual implementation of the tactic from
technical libraries or open source software repositories.

In the following subsections we describe each of these baseline techniques. Then in section 4 we report
empirical studies conducted to compare them.

Web-mining agent: Custom-

search engine to retrieve 

relevant API specifications.

Web-pages 
describing APIs to 
implement tactics

http://docs.oracle.com

http://docs.python.org

http://msdn.microsoft.com/library

HeartBeat Audit Tactic i

Tactic Query 
Terms from 

Textbooks

Traceability 
Indexing 

Processes
Term-Documents 

Indexes (TF/DF/IDF) 
for over 22 Million 

Source Files

Automatically 
Generated Datasets

Data Generator
Parallelized Vector 
Space Model (VSM)

Running on Indexes

...

Heartbeat Audit

Baseline Method ❷:
Web-Mining Approach to Create Traceability 
Datasets

Baseline Method ❸: Big-Data Analysis Approach to Create Traceability Datasets

Sec. Session

...

Tactic Query 
Terms from 
Textbooks

Direct Code Search via

GoogleCode, Koders, 

SourceForge

Indirect Project Selection 
Based on Documents 

Codes Retrieved from Tutorials 

and How to Examples

...

Heartbeat

Audit

Tactic i

P
e

e
r 

R
e

v
ie

w
 P

ro
ce

ss

P
e

e
r 

R
e

v
ie

w
 P

ro
ce

ss

Tactic i

22 Million Source Files

Baseline Method ❶:
Expert-Based Approach to Create Traceability Datasets

Code Crawler

Code Crawler

Code Crawler

...

Fig. 1: Overview of Automated Approaches to Create Tactic Traceability Training-sets

7



Preprint version Waleed Zogaan et. al.

3.1 Baseline Method 1: Expert-Centric Approach

In previous work [29, 30] we used a manual approach to collect datasets to train our tactic classifier.
The training set shown in Table 2 was established by experts in the area of software architecture and
requirements engineering. Then this dataset was peer reviewed and evaluated by two additional indepen-
dent evaluators. The subject matter experts involved in the project had two to eight years of experience
as software architects. The dataset of code snippets implementing architectural tactics were discovered
through the following process:

– Direct Code Search : The source code search engine Koders [3] was used to search for the tactic. The
search query for each tactic was composed from keywords used in descriptions of the tactic found in
textbooks, articles, and white papers or the libraries that architects have previously used to implement
the tactics. All the returned code snippets were reviewed by two other experts to determine whether
they were relevant (i.e. related to the current architectural tactic) or not.

– Indirect Code Search : Project-related documents, such as design documents, online forums, etc.
were searched for references and pointers to architectural tactics. This information was then used to
identify and retrieve relevant code. Similarly all the retrieved code snippets were peer-reviewed to
ensure that they were implementing the targeted tactic.

– ”How to” examples : Online materials, libraries (e.g. MSDN), technical forums (such as Stack Over-
flow) and tutorials were used to extract concrete examples of implemented architectural tactics.

The rigorous search and validation approach used in this manual data collection resulted in a high
quality and precise traceability dataset. However, the cost associated with this approach is substantially
high. For instance, it took us about 3 months to collect and peer review tactical data from 10 different
projects for 5 architectural tactics.

3.2 Web-Mining Approach

Web based libraries, such as msdn2 or oracle3, are one of the resources which contain a rich set of
information about implementing architectural tactics as well as many other design and programming
concerns. Our initial hypothesis was that creating training sets from these libraries will result in a
high quality training set for the classifiers. Figures 2(a) and 2(b) illustrates sample implementation
guidelines retrieved from these libraries to implement reliability requirements through Heartbeat and
security requirements through Audit Trail tactics.

3.2.1 Data Collection Agent

We developed a custom web scraper which uses the search engine APIs of Google to query the content
of predefined technical libraries (e.g. msdn and oracle).

The search query used in this approach contains keywords describing the tactic (drawn from descrip-
tions of the tactic found in textbooks). For example to find APIs related to HeartBeat tactic, we used
the following textual description from a book [8]: “Heartbeat is a fault detection mechanism that
employs a periodic message exchange between a system monitor and a process being monitored.” The

2 https://msdn.microsoft.com
3 http://www.oracle.com

8



Preprint version Waleed Zogaan et. al.

(a) implementing reliability concerns through Heartbeat tactic from msdn.com

(b) addressing security concerns through Audit Trail tactic from Oracle.com

Fig. 2: Two sample API descriptions from technical libraries of (a) MSDN and (b) Oracle

trace user generated the following trace query from this description: Heartbeat OR fault OR detection
OR monitoring.

For each tactic, a number of highly-relevant web pages were collected. The scraper-agent returns the
ranked web-pages containing relevant API documentations and sample codes to implement the tactic.

9



Preprint version Waleed Zogaan et. al.

The information within each Web page is filtered, so the HTML tags are removed and only textual
content is stored in a plain text file.

3.2.2 Generated Data

For the purpose of training a classification technique, the generated data contains balanced sample
text files (web page contents) that are either tactic-related (positive samples) or non-tactical (negative
samples). Although the Web-Mining approach is able to generate unbalanced training sets, for the sake
of comparing different baseline techniques we generate balanced datasets.

The positive samples are API documentations for a tactic or sample tactical code snippets. The neg-
ative or non-tactical samples are sets of documents which have the highest dissimilarity to the originated
query. Negative samples would help to remove the terms which are dominant in the Web pages of the
library (e.g. Microsoft in MSDN library).

3.3 Big-Data Analysis Approach

This approach relies on using machine learning approaches to create the code-based training sets by
mining ultra large scale open source repositories. Our approach includes several different components as
illustrated in Figure 1.

3.3.1 Creating Ultra-Large Scale Repository of Open Source Projects

The first component is the source code scraper, responsible for mining source code of projects from a
wide range of open source repositories.

For the purpose of this study, we have extracted over 116,609 projects from Github, Google Code,
SourceForge, Apache, and other software repositories. We have developed different code crawling appli-
cations to extract projects from all these different code repositories. To extract the projects from Github,
we make use of a torrent system known as GHTorrent4 that acts as a service to extract data and events
and gives it back to the community in the form of MongoDB data dumps. The dumps are composed
of information about projects in the form of users, comments on commits, languages, pull requests,
follower-following relations, and others.

We also utilized Sourcerer [34], an automated crawling, parsing, and fingerprinting application devel-
oped by researchers at the University of California, Irvine. Sourcerer has been used to extract projects
from publicly available open source repositories such as Apache, Java.net, Google Code and Sourceforge.
The Sourcerer repository contains versioned source code across multiple releases, documentation (if avail-
able), project metadata, and a coarse-grained structural analysis of each project. We have downloaded
the entire repository of open source systems from these code repositories.

After having extracted all these projects from Github and other repositories, we performed a data
cleaning where we removed all the empty or very small projects. Table 1 shows the frequency of all the
projects in different languages in our repository.

4 http://ghtorrent.org/

10



Preprint version Waleed Zogaan et. al.

Table 1: Overview of the projects in Source Code Repository of Big-Data Analysis Approach

Language Freq. Language Freq. Language Freq. Language Freq. Language Freq.

Java 32191 Go 1614 Emacs Lisp 321 ActionScript 120 F# 74
JavaScript 22321 CoffeeScript 1187 Visual Basic 134 Elixir 82 Kotlin 43

Python 9960 Scala 729 Erlang 154 Scheme 80 Bison 39
CSS 9121 Perl 699 Processing 152 Prolog 77 Cuda 37

Ruby 8723 Arduino 321 PowerShell 151 D 72 LiveScript 32
PHP 8425 Lua 458 TypeScript 139 Common Lisp 65 AGS Script 29
C++ 5271 Clojure 456 OCaml 105 Pascal 60 SQF 26

C 4592 Rust 308 XSLT 102 Haxe 60 Mathematica 25
C# 4230 Puppet 286 ASP 85 FORTRAN 45 Apex 22

Objective-C++ 33 Groovy 253 Dart 84 OpenSCAD 44 PureScript 22
Objective-C 2616 SuperCollider 185 Julia 84 Racket 44 DM 21

*Total number of projects:116,609, *Total number of source files: 23M

3.3.2 Indexing the Data

The second component of the Big-Data Analysis approach is a term-document indexing module, which
indexes the occurrence of terms across source files of each project in our code repository. This component,
which is called Traceability Indexing, first pre-processes each source file, removes the stop words, stems
the terms to its root form and then indexes source files. The index stores statistics about each documents
(source files) such as term frequency (TF), document frequency (DF), TF/IDF and location of source file
in order to make term-based search more efficient. This is an inverted index which can list, for a term,
the source files that contain it [23].

3.3.3 Data Generator Component

The third component is a paralleled version of Vector Space Model (VSM) [32] capable running over 22
million source files in a few seconds. VSM is a standard approach which computes the cosine similarity
between a query and document, each of which is represented as a vector of weighted terms. A more
complete explanation is provided in most introductory information retrieval textbooks [32].

This component is used to generate a tactical dataset based on a query provided by a trace user. It
calculates the cosine similarity score between provided query and all the source files in the ultra large
scale software repository. For each tactic, the most relevant source files exhibiting highest similarity to
the trace query are selected. In order to avoid domain specific files, this component also retrieves n
samples of non-tactical files for each tactic from the same project (n is defined by the user). Previously it
has been proven that unrelated sample data has significant impact on quality of trained indicator terms
for the classifier presented in this paper [15,25,30].

3.4 Generated Data

The generated data contains a balanced dataset of tactical and non-tactical code snippets retrieved from
10 open source projects. From each project, a tactical file and one non-tactical file is retrieved.

11



Preprint version Waleed Zogaan et. al.

4 Experiment Design

This section presents the experiment design to compare three baseline training-set creation techniques
and to answer our research questions.

In the following we describe the justification for selection of these techniques, and the details of the
methodology used to conduct the comparison and validate the results.

4.1 Justification for Selection of Approaches

The domain of automatically-generated training sets is relatively new. Although there are previous studies
on trace-query replacement and augmentation, the idea of automatically generating training-set has not
been explored.

Development of such approaches relies on the existence of large, (un)structured and rich knowledge
bases. Since both Web and ultra-large-scale code repositories have such characteristics, one key novelty of
the proposed work in this paper is to utilize such resources and develop new techniques to help scientists
in the area of software architecture traceability to obtain high quality datasets.

4.2 Oracle Dataset Used as Testing set

The expert-created dataset of architectural tactics was used as the testing-set and a measurement for
comparison of the three baseline techniques. This dataset was manually collected and peer reviewed by
experts over the time frame of three months.

For each of the five tactics, the experts have identified 10 open-source projects in which the tactic
was implemented. For each project, they performed an architectural biopsy to retrieve a source file in
which the targeted tactic was implemented and also retrieved one randomly selected non-tactical file.
Using this data we built a balanced training set for each tactic which included 10 tactic-related snippets
and 10 non-tactical ones.

4.3 Experiment Design

Three different experiments were designed to answer research questions related to comparison of baseline
techniques.

4.3.1 Experiment Design for Using Baseline Method 1

The accuracy of classification techniques trained using Expert-Based approach was evaluated using a
standard 10-fold cross-validation process. In this experiment the expert created code-snippets dataset
served as both the training and testing set. This is a classic evaluation technique widely used in the area
of data mining and information retrieval and automated requirements traceability [13,14,20,30].

In each execution, the data was partitioned by project such that in the first run nine projects, each
including one related and four unrelated code-snippets, were used as the training set and one project
was used for testing purposes. Following ten such executions, each of the projects was classified one time.
The experiment was repeated using the same pairs of term thresholds and classification thresholds used
in the previous experiment.

12



Preprint version Waleed Zogaan et. al.

Table 2: Manual Dataset Generated by Expert

Tactic Projects
Audit 1-Jfolder(Programming), 2-Gnats(Bugs Tracking), 3-Java ObjectBase Manager(Database),

4-Enhydra Shark(Business, workflow engine), 5-Openfire aka Wildfire(Instant messag-
ing), 6-Mifos(Financial), 7-Distributed 3D Secure MPI( Security), 8-OpenVA.(Security), 9-
CCNetConfig(Programming), 10-OAJ (OpenAccountingJ)(ERP)

Scheduling 1-CAJO library( Programming), 2-JAVA DynEval(Programming), 3-WEKA Remote En-
gine(Machine Learning), 4-Realtime Transport Protocol(Programming), 5-LinuxKernel(Operating
Systems), 6-Apache Hadoop(Parallel Computing), 7-ReactOS(Operating Systems), 8-Java Scheduler
Event Engine(Programming), 9-XORP(Internet Protocol), 10-Mobicents(Mobile Programming)

Authentication 1-Alfresco(Content management), 2-JessieA Free Implementation of the JSSE(Security), 3-PGRADE
Grid Portal(Business, workflow engine), 4-Esfinge Framework(Programming), 5-Classpath Ex-
tensions(Workflows Management), 6-Jwork(Programming), 7-GVC.SiteMaker(Programming), 8-
WebMailJava(Programming), 9-Open Knowledge Initiative(OKI)(Education), 10-Aglet Software De-
velopment Kit(Programming)

Heartbeat 1- Real Time Messaging-Java(Programming), 2-Chat3(Instant messaging), 3-Amalgam(Content
Management), 4-Jmmp(Programming), 5-RMI Connector Server(Web Programming), 6-
SmartFrog(Parallel Computing), 7-F2( Financial), 8-Chromium NetworkManager(Web Pro-
gramming), 9-Robot Walk Control Behavior(Programming), 10-Apache(Programming)

Pooling 1-ThreadPool Class(Programming), 2-Open Web Single Sign On(Web Programming), 3-
ThreadStateMapping2(Programming), 4-RIFE(Web Programming), 5-Mobicents(Mobile Program-
ming), 6-Java Thread Pooling Framework(Programming), 7-Concurrent Query(Programming), 8-
RIFE(Web Programming), 9-RIFE(Web Programming), 10-EJBs(Web Programming)

4.3.2 Experiment Design for Using Baseline Method 2

In the second baseline approach we used a web-mining technique to automatically extract data from
technical libraries such as MSDN and ORACLE. The tactic classifier was trained using this dataset, and
then tested against the accurate dataset of code snippets established by experts (table 2). The experiment
was repeated using a variety of term thresholds and classification thresholds required for formulas 1 and
2.

4.3.3 Experiment Design for Using Baseline Method 3

Last baseline method was trained by the training set generating using Big-Data Analysis approach. Then
the trained classifier was used against the oracle dataset of tactical code snippets collected by the experts.
The training data was sampled from over 116,000 open source projects in our code repository.

4.4 Evaluation Metrics

Results were evaluated using four standard metrics of recall, precision, f-measure, and specificity com-
puted as follows where code is short-hand for code snippets.

Recall =
|RelevantCode ∩RetrievedCode|

|RelevantCode|
(3)

13



Preprint version Waleed Zogaan et. al.

while precision measures the fraction of retrieved code snippets that are relevant and is computed as:

Precision =
|RelevantCode ∩RetrievedCode|

|RetrievedCode|
(4)

Because it is not feasible to achieve identical recall values across all runs of the algorithm the F-Measure
computes the harmonic mean of recall and precision and can be used to compare results across experi-
ments:

FMeasure =
2 ∗ Precision ∗Recall

Precision + Recall
(5)

Finally, specificity measures the fraction of unrelated and unclassified code snippets. It is computed as:

Specificity =
|NonRelevantCode|

|TrueNegatives|+ |FalsePositives|
(6)

4.5 Minimizing Biases

To avoid the impact of dataset size, all the automatically generated datasets included 10 projects, (or
10 related web-pages). We trained the classifier using the code snippets automatically extracted using
our own primitive big-data analysis technique and then attempted to classify the accurate dataset of
manually established and reviewed code snippets.

In order to avoid the bias of datasets size and primarily comparing the quality of training sets, we
decided to use the dataset size equal to manual training-set. Therefore, we only included 10 sample API
specifications. Furthermore, for training purposes, similar to manual case, this dataset also includes 40
descriptions of non-tactic-related IT documents collected by our web-scraper.

To minimize the biases toward selection of terms in the tactic query, we solicited terms from text
book descriptions of the tactic. More systematic approaches were conducted to address other related
threats to validity, which are thoroughly discussed in section 10.

5 Results

The experiments design described in section 4 was followed to train the tactic classifier using three baseline
approaches and compare the results. Table 3 shows the top ten indicator terms that were learned for each
of the five tactics using the three training techniques. While there is significant overlap, the code-snippet
approaches unsurprisingly learned more code-oriented terms such as ping, isonlin, and pwriter.

Figure 3 reports the f-measure results for classifying classes by tactic using several combinations of
threshold value. Overall three baseline methods obtained similar accuracy. In two cases, namely audit and
heartbeat the classifier trained using Expert collected code-snippets outperformed the classifier trained
using automated techniques. In case of authentication the classifier trained using the manually collected
dataset achieved the same level of accuracy as BigData-trained classifier.

In the case of pooling and scheduling, the Big-data-trained classifier outperformed the other ap-
proaches at term threshold values of 0.01 and 0.001 and classification thresholds of 0.7 to 0.3. One
phenomenon that needs explaining in these graphs is the horizontal lines in which there is no variation
in f-measure score across various classification values. This generally occurs when all the terms scoring
over the term threshold value also score over the classification threshold.

14



Preprint version Waleed Zogaan et. al.

Fig. 3: Results for Detection of Tactic-related Classes at various Classification and Term Thresholds for
five Different Tactics

Table 4 reports the optimal results for each of the tactics i.e. a result which achieved the high levels
of recall (0.9 or higher if feasible) while also returning as high precision as possible. The results show
that in four cases the classifier trained using manually collected data recalled the entire tactic related
classes, while also achieving reasonable precision.

The BigData-trained classifier achieved recall of 0.909 in one case and recall of 1 for two of the tactics.
The classifier trained using Web-based approach achieved recall of 1, in two cases and 0.909 for two other
tactics.

RQ 1: Manual Expert-Based Training vs. Automated Web-Mining.

The above results indicate that, in four out of five cases the manual Expert-Based approach outper-
formed the Web-Mining technique. However, the differences were very small. Table 5 shows the differences
between f-measure of Expert-Based Approach and Web-Mining.

Based on this limited observation, we can rank Expert-Based baseline method equivalent to the
Manual approach. In order to evaluate whether differences were statistically significant we performed
Wilcoxon tests as well as the Friedman ANOVA test which is a non-parametric test for comparing

15



Preprint version Waleed Zogaan et. al.

Table 3: Indicator terms learned during training

Tactic Name Web-Mining trained indi-
cator terms

Big-Data trained indicator
terms

Code trained indicator
terms

Heartbeat nlb cluster balanc wlb ip uni-
cast network subnet heartbeat
host

counter, fd, hb, heartbeat,
member, mbr, suspect, ping,
hdr, shun

heartbeat, ping, beat, heart,
hb, outbound, puls, hsr, pe-
riod, isonlin

Scheduling schedul parallel task queue
partition thread unord ppl con-
curr unobserv

schedul, prioriti, task, feasibl,
prio, norm, consid, paramet,
polici, thread

schedul, task, prioriti, prcb,
sched, thread, , rtp, weight, tsi

Authentication authent, password, user, ac-
count, credenti, login, member-
ship, access, server, sql

password, login, usernam, re-
memb, form, authent, persist,
sign, panel, succeed

authent, credenti, challeng,
kerbero, auth, login, otp, cred,
share, sasl

Resource Pooling thread, wait, pool, applic, per-
form, server, net, object, mem-
ori, worker

pool, job, thread, connect, idl,
anonym, async, context, sus-
pend, ms

pool, thread, connect, sparrow,
nbp, processor, worker, time-
wait, jdbc, ti

Audit Trail audit, transact, log, sql, server,
secur, net, applic, databas,
manag

trail, audit, categori, observ,
udit, outcom, ix, bject, acso,
lesser

audit, trail, wizard, pwriter,
lthread, log, string, categori,
pstmt, pmr

Table 4: A Summary of the Highest Scoring Results

Tactic Training
Method

FMeasure Recall Prec. Spec. Term/ Clas-
sification
threshold

Audit
Web-Mining 0.71 1 0.55 0.785 0.01 / 0.4
Big-Data 0.687 1 0.523 0.762 0.001 / 0.2
Expert-Manual 0.758 1 0.611 0.833 0.001 / 0.5

Authentication
Web-Mining 0.956 1 0.916 0.9772 0.01 / 0.3
Big-Data 0.6 0.545 0.666 0.931 0.05 /0.1
Expert-Manual 0.956 1 0.916 0.977 0.005 / 0.4

Heartbeat
Web-Mining 0.48 0.545 0.428 0.813 0.005 / 0.1
Big-Data 0.592 0.727 0.5 0.813 0.001 / 0.1
Expert-Manual 0.689 1 0.526 0.775 0.001 / 0.2

Pooling
Web-Mining 0.833 0.909 0.769 0.931 0.01 / 0.6
Big-Data 0.952 .909 1 1 0.01 /0.7
Expert-Manual 0.9 0.818 1 1 0.05 / 0.7

Scheduling
Web-Mining 0.740 0.909 0.625 0.863 0.005 /0.2
Big-Data 0.916 1 0.846 0.954 0.001 / 0.2
Expert-Manual 0.88 1 0.785 0.931 0.01 / 0.4

the medians of paired samples (Note: The data was not normally distributed). Both tests have been
recommended for small datasets (as small as 5 per group) [5].

In both statistical tests, we could not reject the null hypothesis (there is a difference in median/mean-
rank of two groups.)5

Result 1: There is no statistically significant difference between the trace
link classification accuracy for a classifier trained using Expert-Based ap-
proach and Automated-Web Mining.

5 p-value of 0.05

16



Preprint version Waleed Zogaan et. al.

Table 5: Differences in F-Measure of Expert-Based and Manual Approach

Audit Authenticate Heartbeat Pooling Scheduling

0.048 0 0.209 0.067 0.14

RQ2: Manual Expert-Based Training vs. Automated Big-Data Analysis.
In two of the five tactics, the Big-Data Analysis approach outperformed the manual Expert-Based

approach. In two cases both approaches performed very close. Table 6 shows the differences between the
f-measure of two approaches.

Table 6: Differences in F-Measure of manual Expert-Based and automated Big-Data Analysis Approach

Audit Authenticate Heartbeat Pooling Scheduling

0.071 0.356 0.097 -0.052 -0.036

Similar to RQ1, Wilcoxon and Friedman ANOVA tests were conducted to compare the medians of
paired samples. In both cases, the null hypothesis was retained. 6

Result 2: There is no statistically significant difference between the trace
link classification accuracy for a classifier trained using Expert-Based ap-
proach and automated Big-Data Analysis. This indicates that Big-Data
Analysis approach can be used as a practical technique to help software
traceability researchers generate datasets.

6 Cost-Benefit Analysis

Our empirical study of the tree baseline training set creation techniques suggests that there is no sta-
tistically significant differences between trace link accuracy for a classification technique trained using
each of these techniques. However the cost of employing experts to help in establishing the training set
is significantly higher than automated approaches, while the obtained results are not different.

Cost-Comparison In an earlier work, the estimated cost (in terms of
time) for creating the training set using Expert-Based approach for 5
tactics was 1080 hours. Taking into account the hourly salary of an expert
or even a student in terms of dollar per hour will make this approach cost
thousands of dollars.
The automated Big-Mining approach generates similar code snippets
dataset within a few seconds.

One drawback for any automated data-mining based approach is the inherent inaccuracy of these
techniques. To better investigate this fact in our automated techniques, two members of our team man-
ually evaluated the automatically generated training-sets. The accuracy of each training-set per tactic is

6 p-value of 0.05

17



Preprint version Waleed Zogaan et. al.

shown in table 7. Overall, the automated approach based on Big-Data analysis has created more correct
data points (code snippets) than the web-mining approach. This might be because of the amount of
noise on the technical libraries as well as inaccuracies in the underlying search technique used by the
web-mining approach.

Table 7: Quality of automatically generated training-set

Audit Scheduling Authentication Heartbeat Pooling

Web-Mining 0.6 1 0.91 0.6 0.8
Big-Data Analysis 1 1 1 0.9 0.9

We also compared the data quality in two baseline methods of Big-Data analysis and Manual method.
While in over 90% of cases the Big-Data approach has successfully retrieved correct code snippets from
our large scale software repository, we observed that the data collected by experts exhibits higher in-
ternal quality. The manually collected training-sets not only contain 100% accurate data points (due
the rigorous data collection), the experts have also taken into account the representativeness, diversity,
generalizability, as well as quality of these samples for training purposes. The manually collected code-
snippets are richer in terms of vocabularies, APIs and comments. Based on our observation, we believe
this is one of the main differences in the underlying baseline methods.

Investigating the score assigned to each indicator terms across three baseline techniques, we observed
that the indicator terms generated by manually created dataset have bigger probability scores, and are
ordered better with less noises (e.g. unrelated terms). In future work, we aim to augment our automated
approach so that not only can they find related code-snippets, they will also take into account metrics
related to data quality and sampling strategies.

6.1 To What Extent Expert-Based Approach Can be Practical?

An ongoing debate exists on the research techniques examined/developed using students-generated
dataset. The community have utilized different mitigation techniques to minimize the biases and threats
related to this set of approaches [19, 21]. At the same time, the community have praised the notion
of Expert-Based approach in obtaining dataset. Unfortunately there are several threats related to this
approach as well, which some of them are similar to student-generated datasets. In this section, we will
explore one of these challenges, which is related to the extent such datasets can be useful. Hypothesis
: It is commonly accepted as a fact that, the larger the size of training set, the more accurate and gener-
alizable the underling learning method will be. This is essentially because, when the sample size is large
enough, it will more accurately reflect the population it was, and therefore the sample is distributed
more closely around the population mean. However, to the best of our knowledge no one has explored
whether there is a benefit in extending the training set size generated by the experts. Specially that
such extension means can have a significant cost. With all the mitigation techniques used to minimize
the threat to validity and create generalizable training set, we do not have scientific confidence in this
matter. Experiment to Investigate: In the next experiment we investigate the impact of different
dataset sizes on accuracy of traceability link discovery. The goal of this experiment is not to prove that
the training set size matters or does not matter. instead we aim to perform a cost-benefit analysis for
the cases where the training-set is established manually by experts.

18



Preprint version Waleed Zogaan et. al.

For instance, extending the training-set of tactical code snippets from 10 open source projects to 50
projects requires almost 6 additional months of work. The experiment described in this section aims to
investigate the increase in accuracy of classifiers for such additional cost.

6.1.1 Experiment Design

In our very first work in this area [30], we used training sets of code snippets from 10 software systems.
In extension of this work [25] we used code-snippets sampled through a peer-reviewed process from 50
open source projects. Considering that the training sets were established using systematic manual peer
review, it took an extensive amount of time to create such traceability training sets.

Dataset For each of the five tactics included in this study, three experts identified 50 open-source
projects in which the tactic was implemented. For each project an architecture biopsy was performed
to retrieve the source file in which each utilized tactic was implemented. In addition, for each project a
randomly selected non-tactical source files was retrieved.

Fig. 4: The impact of training-set size in manually established dataset on accuracy of recovering trace
links

Impact of Training set Size on Trace Link Accuracy (Two Case Studies) In this part of
research, we investigate RQ3: What is the Impact of Training set Size on the Accuracy of Trace Link
Classification? At first the classifiers were trained using 5 sub-samples of this dataset for the size ranges
of 10, 20, 30, 40, and 50 sample code snippets. Then each time the classifiers were used against the source
code of Apache Hadoop and OfBiz. These two projects are widely used in industry and are representative
of complex software systems.

19



Preprint version Waleed Zogaan et. al.

We compare the trace-link accuracy of classifiers trained using different training set sizes. This would
help us investigate if there is a return-on-investment for employing experts to establish large(er) training
sets.

The accuracy metrics are reported in figure 4. The bars in this graph show precision, recall and
specificity [30]. The red line shows the f-measure metric. Except heartbeat architectural tactic that
exhibits major changes across different training set sizes, in all the other four tactics, the training-set
size did not show any significant changes in the accuracy of trained classifier.

Result 3: This observation supports the notion that in case of manually
creating a high quality training set, the size of dataset will not have a
significant impact on the accuracy of classification technique described
in equations 2 and 1. Collecting more data-points by experts will not
increase the accuracy or generalizability of the trained classifier.

This observation is only supported by the data obtained from two case studies. In future works, we will
run more experiments, to investigate if this would be valid across different systems.

7 Application to the other Area of Requirements Engineering

The previous experiments show the feasibility and practicality of automated training set generation tech-
niques. The results indicate that the Web-Mining and Big-Data Analysis approaches can automatically
generate training set with similar quality to expert-created ones.

In this section, we aim to conduct a feasibility study on using the proposed automated dataset creation
technique to support research in different areas of requirements engineering. This will provide an answer
for RQ4 (stated in section 1).

7.1 Usage Scenario#1: Tracing Regulatory Codes.

This subsection presents the first potential usage scenario for applying the automated dataset generation
techniques in the area of tracing regulatory codes. Problem: One of the challenges faced by community
of researchers in the area of requirements traceability is the lack of datasets such as requirements, imple-
mentation or documentations related to regulatory codes within a software domain. There are a limited
number of datasets commonly used such as CCHIT or HIPAA which can be found on COEST.ORG
website. The proposed research techniques in this area are primarily evaluated by running experiments
over sections of the same dataset, or by tracing one of these to the source code of two open source
software systems of WorldVista and Itrust.

Feasibility Study: Technical libraries such as MSDN have several documentations, technical guide-
lines, best practices and preselected technologies and APIs which can be used to address a wide range
of regulatory codes, such as HIPAA and SOX [9]. For example, in table 8 we list a set of regulatory-
compliance acts which we found significant technical discussions about them on MSDN library.

In a preliminary study, we used our automated technique to create a dataset for the domain of
“Tracing Regulatory Code”. We ran a sample experiment to create a dataset for technologies which can
be used to address HIPAA regulations related to Database and Security. We evaluated the accuracy of
the extracted data, the results are presented in table 9 and indicated that 63% of automatically generated
data points were correct. Due to the lack of space we only provide an excerpt of two sample data points:

20



Preprint version Waleed Zogaan et. al.

•“HIPAA compliance: Healthcare customers and Independent Software Vendors (ISVs) might choose SQL Server in Azure

Virtual Machines instead of Azure SQL Database because SQL Server in an Azure Virtual Machine is covered by HIPAA

Business Associate Agreement (BAA). For information on compliance, see Azure Trust Center.”

•“Confidentiality: Do not rely on custom or untrusted encryption routines. Use OS platform provided cryptographic APIs,

because they have been thoroughly inspected and tested rigorously. Use an asymmetric algorithm such as RSA when it is

not possible to safely share a secret between the party encrypting and the party decrypting the data....”

7.2 Usage Scenario#2: Classifying Functional Requirements:

Another area where automated techniques can be used is generating datasets for the problem of classi-
fying/tracing functional requirements.

Problem: Traditionally VSM [18] technique has been widely used to trace functional requirements
to source code. On the other hand, there are studies showing the feasibility of using supervised learning
methods to trace reoccurring functional requirements [6]. The biggest drawback for this approach is the
difficulty of obtaining several samples of the same functional requirements or code snippets.

Feasibility Study: Using Big-Data analysis we observed that, in our ultra-large code repository,
there are a large number of software systems from the same domain, therefore the code snippets to
implement functional requirements will also reoccur across these systems. Therefore it is possible to collect
datasets of such implementation and use different supervised learning techniques to detect these types of
requirements in the source code or utilize such dataset for other purposes. Table 9 shows the accuracy of
the Big-Data analysis in establishing datasets for code snippets implementing functional requirements of

Table 8: Sample Regulations Discussed on Technical Libraries

ACT Name Aplies to

Sarbanes
Oxley Act

Legislation passed by the U.S. Congress to protect shareholders and the general public from account-
ing errors and fraudulent practices in the enterprise, as well as improve the accuracy of corporate
disclosures [9]. More on (http://www.sec.gov/)

HIPAA
the federal Health Insurance Portability and Accountability Act of 1996. The primary goal of the
law is to make it easier for people to keep health insurance, protect the confidentiality and security
of health care information and help the health care industry control administrative costs. [9]

PCI
Payment Card Industry Data Security Standard(PCI DSS) is a proprietary information security
regulation for organizations that handle branded credit cards. [4]

The Gramm-
LeachBliley
Act (GLBA)

Also known as the Financial Services Modernization Act of 1999, is an act of the 106th United States
Congress, removing barriers for confidentiality and integrity of personal financial information stored
by financial institutions. [2]

SB 1386

California S.B. 1386 was a bill passed by the California legislature. The first of many U.S. and
international security breach notification laws. Enactment of a requirement for notification to any
resident of California whose unencrypted personal information was, or is reasonably believed to have
been, acquired by an unauthorized person. [1]

BASEL II

Is recommendations on banking laws and regulations issued by the Basel Committee on Banking Su-
pervision. Aplies to: Confidentiality and integrity of personal financial information stored by financial
institutions. Availability of financial systems. Integrity of financial information as it is transmitted.
Authentication and integrity of financial transactions [9].

Health Level
Seven (HL7)

Provides regulations for the exchange of data among health care computer applications that elimi-
nate or substantially reduce the custom interface programming and program maintenance that may
otherwise be required [9].

21



Preprint version Waleed Zogaan et. al.

an ERP (Enterprise Resource Planning) software system. In fact, in all cases, our approach successfully
created datasets of code snippets to implement those requirements. The terms in the queries to retrieve
the implementation of functional requirements were directly extracted from an on-line document of a
similar system 7.

8 Tool Support

A functional prototype of the automated approaches is developed and released as a web-based tool called
BUDGET (Bigdata aUgmented Dataset GEneration Tool)8. BUDGETs inputs are the name of the tactic
of interest, which approach(es) to use when collecting the data - Web Mining or Big-Data Analysis -
and the dataset size to be generated. Furthermore, there are more advanced sampling parameters that
can be tuned if a particular data sampling strategy needs to be followed. This becomes especially useful
for Big-Data analysis approach where the user has access to index source code of more than 100,000
applications. The sampling gives the user the flexibility to retrieve the tactical implementations from a
single project, many projects, or the entire repository.

Figure 5 shows the user interface for specifying generic parameters of the BUDGET tool. As shown
in this figure, the generated dataset size can be either balanced (equal amount of negative and positive
samples generated) or unbalanced (different sizes of positive and negative samples) and the datasets can
be automatically created using both Web Mining and Big Data analysis techniques or only one.

When the Web Mining approach is chosen, BUDGET will collect a set of web pages related to a tactic
selected from technical libraries. The user can specify the list of technical libraries in a comma-separated
list of URLs. By default, the tool uses MSDN as an information source if no other libraries are provided.
Figure 6 shows the form field for indicating the technical libraries.

In order to retrieve tactical-related web pages, BUDGET uses Google Search Engine APIs to query
technical programming libraries. Tactical terms collected from textbooks are used as a search query.
Then BUDGET creates positive/tactical samples by extracting the content of web pages in top search
results (i.e. HTML tags are filtered out). A similar process is followed to generate negative samples; the
only difference is that the search query is modified to only return web pages that do not contain any of
the tactic-related terms.

7 Please see terms in the figures: http://www.1tech.eu/clients/casestudy_ventraq
8 http://design.se.rit.edu/budget/

Table 9: Accuracy of automatically generated datasets in two different areas of requirements engineering

Approach Query Correct

Big-Data

Query 1: Billing, Bill Calculation, In-
voice Generation

90%

Query 2: Balance Management,
Credit Management, Account Man-
agement, Credit Card Processing

100%

Query 3: Business Intelligence, SLA
Management, Database Marketing

100%

Query 4: Product Shipment, Shop-
ping

100%

Web-
Mining

Database Security HIPAA 63%

22

http://www.1tech.eu/clients/casestudy_ventraq


Preprint version Waleed Zogaan et. al.

Fig. 5: User interface for selecting the data generation parameters of BUDGET tool

(a) Configuration parameters for Big Data Analysis

(b) UI for specifying the technical 
libraries for Web Mining

(a) Output of the tool, downloaded as 
a zip file

Fig. 6: Configuration parameters for Big Data Analysis, Web-Mining Approach and Generated Output

When using the Big Data Analysis technique, BUDGET will retrieve source code files from public
code repositories to generate the datasets. Currently BUDGET’s source code repository contains over
116,000 projects, continuously more open source projects are being added to this repository.

BUDGET’s parameter for generating training set of tactical code snippets include programming lan-
guages of the source codes, a sampling strategy (Figure 6). The sampling strategy defines how BUDGET
should sample the tactic-related code snippets from the our ultra-large scale repositories. The three pos-
sible sampling strategies are: Best Cases, Random Sampling and Stratified Sampling. These strategies
work as follows:

23



Preprint version Waleed Zogaan et. al.

– Best Cases: In this strategy, the tactical files with the highest similarity score are returned. By default,
the entire source code repository is used for drawing the samples, unless the user specifies a list of
repositories to limit the sampling.

– Random Sampling : In this strategy, first the user specifies the sampling population by defining the
percentage of tactical files to be included in the base population. BUDGET first separates top P % of
tactical files (P defined by the user), then randomly generates a dataset size of N (where N is defined
by the user).

– Stratified Sampling : For each project in the repository (or user defined list), only X tactical source
code files are randomly selected. The value of X is also indicated by the user.

After selecting the sampling strategy, the sampled tactical files are sorted based on the similarity score
to the tactic query. Subsequently, the tool generates the N positive and M negative samples defined by
the user. For that, the tool selects the N most similar tactical files and the M least related files for
generating the positive and negative samples, respectively.

Besides using the tactical terms for the Big-Data Analysis and Web Mining approaches, the tool has
the flexibility of using user-defined terms to generate datasets. In this situation, instead of using our own
set of tactical terms, BUDGET applies the terms specified by the user in the Web Mining and Big-Data
Analysis techniques.

After the datasets are generated, the BUDGET makes them available for download as a compressed
file in ZIP format. This ZIP file will contain two folders: one has textual files obtained from Web Mining
and the other has source code files generated from Big-Data Analysis. Each folder has two subdirectories
for separating positive from negative cases. Figure 6 shows the folder hierarchy of the datasets generated.

9 Interpretation of Results and Reproducibility

Extrapolating the results of empirical studies beyond the context of the experiments and the data used in
them can be risky. Our empirical study is not an exception. We compared three baseline data generation
techniques. The results indicate that automated data generation techniques resulted in the same trace
link accuracy as expert-based approach. This conclusion was drawn based on study of five architectural
tactics. However our further experiments have shown that several tactics share similar characteristics at
the code level, and can be detected using text analysis. Therefore, it is possible to utilize BUDGET for
automating generation of training set for a large number of architectural tactics. We expect to observe
different accuracy.

The impact of dataset size in case of expert-created training set was evaluated using two industrial case
study. Although these are large scale, representative industrial projects, we believe further experiments
would be beneficial to support/disprove our observation.

Since BUDGET is accessible for the public, it would enable the researchers in the community to
conduct similar experiments, reproduce the results and expand this work. The expert-based dataset used
in investigating the impact of dataset size is also released on-line at COEST.org.

10 Threats To Validity

Threats to validity can be classified as construct, internal, external, and statistical validity. We discuss
the threats which potentially impacted our work, and the ways in which we attempted to mitigate them.

24



Preprint version Waleed Zogaan et. al.

External validity evaluates the generalizability of the approach. One of the primary threats is
related to the construction of the datasets for this study. The manual dataset included over 250 samples
of tactic-related code. The task of locating and retrieving these code snippets was conducted primarily
by two experts in the area of requirements and software architecture and was reviewed by two additional
experts. This was a very time-consuming task that was completed over the course of three months. The
systematic process we followed to find tactic related classes and the careful peer-review process gave us
confidence that each of the identified code snippets was indeed representative of its relevant tactic. In
addition, all of the experiments conducted in our study were based on Java, C# and C code. Some of
the identified keyterms are influenced by the constructs in these programming languages such as calls to
APIs that support specific tactic implementation. Furthermore, the Hadoop and OfBiz case studies were
designed to evaluate the impact of dataset size on accuracy of tactic classification on a large and realistic
system. We therefore expect them to be representative of a typical software engineering environment,
which suggests that it could generalize to a broader set of systems. On the other hand, the majority of
identified keyterms are non-language specific. The experimental results reported in this paper will not
be impacted by this issue.

Construct validity evaluates the degree to which the claims were correctly measured. The n-fold
cross-validation experiments we conducted are a standard approach for evaluating results when it is
difficult to gather larger amounts of data. To avoid the impact of dataset size on training-set quality, all
the comparison experiments were conducted on the training set of equal size.

Internal validity reflects the extent to which a study minimizes systematic error or bias, so that
a causal conclusion can be drawn. A greater threat to validity is that the search for specific tactics was
limited by the preconceived notions of the researchers, and that additional undiscovered tactics existed
that used entirely different terminology. However we partially mitigated this risk through locating tactics
using searching, browsing, and expert opinion. Since multiple data collection mechanisms were used by
experts, the dataset is not dependent on a limited number of terms, in fact in some cases there a large
diversity in terminologies. In the case of the Hadoop project, we elicited feedback from Hadoop developers
on the open discussion forum. Another threat in this category is that, the accuracy automated techniques
can be dependent to the search query used in the study. To avoid this bias, we preselected the queries
from description of tactics from text book. In future work we are planning to run different experiments to
identify the impact of domain knowledge of the person who creates the query on the quality of datasets.

Statistical validity concerns whether the statistical analysis has been conducted correctly. In order
to address this threat appropriate statistical techniques were used. For reliability of conclusions we used
two non-parametric tests. Uniformly both tests indicated that there is no statistically differences between
the accuracy of training methods although manual ones ranks the best.

11 Conclusion

In this paper we presented three baseline techniques for creating training-set to train a classifier to
detect architectural tactics and establish traceability links form architecturally significant requirements
to tactics and source code. Our analysis shows that automated techniques can generate useful training-
sets with mostly similar quality to a expert-created datasets. The proposed automation techniques can be
used in the area of tracing architecturally significant requirements as well as other software engineering
areas. The long-term goal of this project is to develop automated techniques capable of creating scientific
dataset with similar/or better quality of the expert create datasets. In future work, we will investigate
the practicality of the automated techniques in other domains. We will also extend our work to provide

25



Preprint version Waleed Zogaan et. al.

more fine-grained sampling of the source files or web-pages and therefore reduce the potential noise in
the final training sets. We also plan to run more experiments to understand the impact of trace user’s
domain knowledge on quality of established datasets.

References

1. California Senate Bill SB 1386, Sept. 2002. http://www.leginfo.ca.gov/pub/13-14/bill/sen/sb_1351-1400/sb_

1351_bill_20140221_introduced.pdf.
2. US Congress. Gramm-Leach-Bliley Act, Financial Privacy Rule. 15 USC 6801–6809, November 1999. http://www.law.

cornell.edu/uscode/usc_sup_01_15_10_94_20_I.html.
3. Koders.
4. P. C. I. Council. Payment card industry (pci) data security standard. Available over the Internet - July 2010. https:

//www.pcisecuritystandards.org.
5. Using the Student’s t-test with extremely small sample sizes.
6. P. R. Anish, B. Balasubramaniam, J. Cleland-Huang, R. Wieringa, M. Daneva, and S. Ghaisas. Identifying archi-

tecturally significant functional requirements. In Proceedings of the Fifth International Workshop on Twin Peaks of
Requirements and Architecture, TwinPeaks ’15, pages 3–8, Piscataway, NJ, USA, 2015. IEEE Press.

7. F. Bachmann, L. Bass, and M. Klein. Deriving Architectural Tactics: A Step Toward Methodical Architectural Design.
Technical Report, Software Engineering Institute, 2003.

8. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Adison Wesley, 2003.
9. G. W. Beeler, Jr. and D. Gardner. A requirements primer. Queue, 4(7):22–26, Sept. 2006.

10. C. E. Brodley. Addressing the selective superiority problem: Automatic algorithm/model class selection, 1993.
11. J. R. Cano, F. Herrera, and M. Lozano. Using evolutionary algorithms as instance selection for data reduction in kdd:

An experimental study. Trans. Evol. Comp, 7(6):561–575, Dec. 2003.
12. J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E. Romanova. Best practices for automated traceability.

Computer, 40(6):27–35, 2007.
13. J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker. A machine learning approach for tracing regulatory

codes to product specific requirements. In ICSE (1), pages 155–164, 2010.
14. J. Cleland-Huang, O. Gotel, J. Huffman Hayes, P. Mader, and A. Zisman. Software traceability: Trends and future

directions. In Proc. of the 36th International Conference on Software Engineering (ICSE), India, 2014.
15. J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc. Automated detection and classification of non-functional require-

ments. Requir. Eng., 12(2):103–120, 2007.
16. R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen. Mining billions of ast nodes to study actual and potential usage

of java language features. In Proceedings of the 36th International Conference on Software Engineering, ICSE 2014,
pages 779–790, New York, NY, USA, 2014. ACM.

17. G. Gates. The reduced nearest neighbor rule (corresp.). Information Theory, IEEE Transactions on, 18(3):431–433,
May 1972.

18. M. Gethers, R. Oliveto, D. Poshyvanyk, and A. Lucia. On integrating orthogonal information retrieval methods to
improve traceability recovery. In Software Maintenance (ICSM), 2011 27th IEEE International Conference on, pages
133–142, Sept 2011.

19. M. Gibiec, A. Czauderna, and J. Cleland-Huang. Towards mining replacement queries for hard-to-retrieve traces. In
Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, ASE ’10, pages 245–254,
New York, NY, USA, 2010. ACM.

20. R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. Morgan Kaufmann,
1995.

21. G. A. Liebchen and M. Shepperd. Data sets and data quality in software engineering. In Proceedings of the 4th
International Workshop on Predictor Models in Software Engineering, PROMISE ’08, pages 39–44, New York, NY,
USA, 2008. ACM.

22. A. Mahmoud. An information theoretic approach for extracting and tracing non-functional requirements. In Proc.
RE, pages 36–45. IEEE, 2015.

23. M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in Action, Second Edition: Covers Apache Lucene 3.0.
Manning Publications Co., Greenwich, CT, USA, 2010.

24. J. C.-H. Mehdi Mirakhorli. Detecting, tracing, and monitoring architectural tactics in code. IEEE Trans. Software
Eng., 2015.

25. M. Mirakhorli. Preserving the quality of architectural decisions in source code, PhD Dissertation, DePaul University
Library, 2014.

26

http://www.leginfo.ca.gov/pub/13-14/bill/sen/sb_1351-1400/sb_1351_bill_20140221_introduced.pdf
http://www.leginfo.ca.gov/pub/13-14/bill/sen/sb_1351-1400/sb_1351_bill_20140221_introduced.pdf
http://www.law.cornell.edu/uscode/usc_sup_01_15_10_94_20_I.html
http://www.law.cornell.edu/uscode/usc_sup_01_15_10_94_20_I.html
 https://www.pcisecuritystandards.org
 https://www.pcisecuritystandards.org


Preprint version Waleed Zogaan et. al.

26. M. Mirakhorli and J. Cleland-Huang. Tracing Non-Functional Requirements. In: Andrea Zisman, Jane Cleland-Huang
and Olly Gotel. Software and Systems Traceability., Springer-Verlag., 2011.

27. M. Mirakhorli and J. Cleland-Huang. Using tactic traceability information models to reduce the risk of architectural
degradation during system maintenance. In Proceedings of the 2011 27th IEEE International Conference on Software
Maintenance, ICSM ’11, pages 123–132, Washington, DC, USA, 2011. IEEE Computer Society.

28. M. Mirakhorli, A. Fakhry, A. Grechko, M. Wieloch, and J. Cleland-Huang. Archie: A tool for detecting, monitoring,
and preserving architecturally significant code. In CM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE 2014), 2014.

29. M. Mirakhorli, P. Mäder, and J. Cleland-Huang. Variability points and design pattern usage in architectural tactics.
In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering,
FSE ’12, pages 52:1–52:11. ACM, 2012.

30. M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar. A tactic centric approach for automating traceability of
quality concerns. In International Conference on Software Engineering, ICSE (1), 2012.

31. M. L. C. Passini, K. B. Estbanez, G. P. Figueredo, and N. F. F. Ebecken. A strategy for training set selection in text
classification problems. (IJACSA) International Journal of Advanced Computer Science and Applications, 4(6):54–60,
2013.

32. G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

33. D. B. Skalak. Prototype and feature selection by sampling and random mutation hill climbing algorithms. In Machine
Learning: Proceedings of the Eleventh International Conference, pages 293–301. Morgan Kaufmann, 1994.

34. I. University of California. The sourcerer project. sourcerer.ics.uci.edu.
35. D. R. Wilson and T. R. Martinez. Reduction techniques for instance-basedlearning algorithms. Mach. Learn.,

38(3):257–286, Mar. 2000.
36. J. Zhu, M. Zhou, and A. Mockus. Patterns of folder use and project popularity: A case study of github repositories. In

Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
ESEM ’14, pages 30:1–30:4, 2014.

27


	Introduction
	Background
	Overview of the Three Baseline Techniques
	Experiment Design
	Results
	Cost-Benefit Analysis
	Application to the other Area of Requirements Engineering
	Tool Support
	Interpretation of Results and Reproducibility
	Threats To Validity
	Conclusion

