
Achilles’ Heel of Plug-and-Play So�ware Architectures:
A Grounded Theory Based Approach

Joanna C. S. Santos
jds5109@rit.edu

Rochester Institute of Technology
Rochester, NY, USA

Adriana Sejfia
axs1461@rit.edu

Rochester Institute of Technology
Rochester, NY, USA

Taylor Corrello
tnc5484@rit.edu

Rochester Institute of Technology
Rochester, NY, USA

Smruthi Gadenkanahalli
sg1626@rit.edu

Rochester Institute of Technology
Rochester, NY, USA

Mehdi Mirakhorli
mxmvse@rit.edu

Rochester Institute of Technology
Rochester, NY, USA

ABSTRACT
Through a set of well-defined interfaces, plug-and-play architec-
tures enable additional functionalities to be added or removed from
a system at its runtime. However, plug-ins can also increase the
application’s attack surface or introduce untrusted behavior into
the system. In this paper, we 1© use a grounded theory-based ap-
proach to conduct an empirical study of common vulnerabilities
in plug-and-play architectures; 2© conduct a systematic literature
survey and evaluate the extent that the results of the empirical
study are novel or supported by the literature; 3© evaluate the
practicality of the findings by interviewing practitioners with sev-
eral years of experience in plug-and-play systems. By analyzing
Chromium, Thunderbird, Firefox, Pidgin, WordPress, Apache OfBiz,
and OpenMRS, we found a total of 303 vulnerabilities rooted in ex-
tensibility design decisions and observed that these plugin-related
vulnerabilities were caused by 16 different types of vulnerabili-
ties. Out of these 16 vulnerability types we identified 19 mitigation
procedures for fixing them. The literature review supported 12
vulnerability types and 8 mitigation techniques discovered in our
empirical study, and indicated that 5 mitigation techniques were
not covered in our empirical study. Furthermore, it indicated that
4 vulnerability types and 11 mitigation techniques discovered in
our empirical study were not covered in the literature. The inter-
views with practitioners confirmed the relevance of the findings
and highlighted ways that the results of this empirical study can
have an impact in practice.

CCS CONCEPTS
• Security and privacy → Software security engineering; • Soft-
ware and its engineering → Software design engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338969

KEYWORDS
Software Security, Plug-and-Play Design, Vulnerabilities
ACM Reference Format:
Joanna C. S. Santos, Adriana Sejfia, Taylor Corrello, Smruthi Gadenkana-
halli, and Mehdi Mirakhorli. 2019. Achilles’ Heel of Plug-and-Play Soft-
ware Architectures: A Grounded Theory Based Approach. In Proceedings of
the 27th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE ’19), Au-
gust 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3338969

1 INTRODUCTION
Many application domains adopt plug-and-play 1 architectures to
enhance their systems’ extensibility, reusability and modifiabil-
ity [8]. For example, the automotive industry is rapidly creating
plug-and-play architectures in which software modules can be slot-
ted into the overall electronic architecture without unexpectedly
disrupting the other components [18]. In the finance domain, plug-
and-play architectures provide universal APIs for in-store point
of sale (POS) systems that allow users to plug in a variety of dif-
ferent applications. In medical device development, plug-and-play
architectures enhance programs’ and medical devices’ interoper-
ability, where third-party medical applications are plugged into
networked medical devices to provide diagnosis, treatment, re-
search, safety, and quality improvements, as well as equipment
management features [3, 4]. In plug-and-play architectures, the
software is decomposed into a “core” component representing the
plug-and-play environment of the host application and a set of
bundles representing “plug-ins.” The plug-and-play environment
provides the software’s main functionalities and runtime infrastruc-
ture for plug-ins. Plug-ins provide bundled functionalities which
can be added at runtime, making the software customizable and
extensible. This means that the software product can be released
early, and new features can be added later through the plug-ins.
Moreover, plug-and-play architectures can enable contributions
from third-party vendors because extending the architecture does
not require access to the source code; instead, these third-party
developers can implement well-defined public interfaces provided
by the plug-and-play environment [9].
1In this paper, we use the term plug-and-play to refer to a wide range of applications
that use extensible architectures. Other similar terms used are plugin-based, extension-
based, app-based and etc.

https://doi.org/10.1145/3338906.3338969
https://doi.org/10.1145/3338906.3338969

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Joanna C. S. Santos, Adriana Sejfia, Taylor Corrello, Smruthi Gadenkanahalli, and Mehdi Mirakhorli

Although plug-ins are useful for adding new features to the soft-
ware, they can increase the application’s attack surface or introduce
untrusted behaviors. Designing a secure plug-and-play architecture
is critical and non-trivial as the features provided by plug-ins are
not known in advance and inclusion of the third party functions can
negatively affect the system’s security and trustworthiness [9, 30].
There are numerous vulnerabilities reported for plug-and-play ar-
chitectures [27, 31, 32, 37, 44]. A group of researchers demonstrated
how hackers can wirelessly access the critical driving functions of
a vehicle through an entire industry of Internet-enabled gadgets
plugged directly into cars’ dashboards to monitor vehicles’ location,
speed and efficiency [16]. In this case, the plug-in was insecure;
however, severe security and privacy issues could also occur when
the system accepts malicious plug-ins [26].

Although there are numerous studies in the area of plug-and-
play software architectures [1, 11, 14, 23, 56–58] and applications in
various domains [5, 18, 22, 25, 46, 47], as well as domain-specific ex-
amples of such extensible architectures [7, 10, 45, 48], we currently
lack an empirically grounded work that aims to study vulnera-
bilities that are prevalent in plug-and-play software architectures
as well as mitigation techniques to prevent such vulnerabilities.
Furthermore, currently known software vulnerabilities are either
generic and not contextualized for specific domains (e.g. PnP) or
are well characterized for commercial web-based systems.

The novel contribution of this paper lies in 1© an in-depth imple-
mentation of grounded theory to empirically study vulnerabilities
prevalent in PnP architectures and to characterize such vulnerabili-
ties based on real data collected from widely used PnP systems. We
use classical grounded theory [19] as a systematic inductive method
for conducting qualitative research of software vulnerabilities in
plug-and-play architectures. We chose this approach due to its em-
phasis on the emergence of concepts [20, 52], i.e., high emphasis on
an inductive rather than a deductive data analysis. Since we do not
know in advance the nature of the vulnerabilities (except a high-
level knowledge that they are rooted in plug-and-play systems), our
goal is to allow the data to drive our process of discovering classes
of plug-and-play vulnerabilities (inductive reasoning) rather than
formulating hypotheses at the beginning of the analysis process
(deductive reasoning). 2© A systematic literature review that aims
to map the results of the empirical study to the state-of-the-art and
examine to what extent the results are supported by the literature
or complements the existing body of work in this domain. This ex-
tensive literature review is conducted after examining real projects
to prevent the influence of existing concepts on the emerging re-
sults. 3© Interviews with six practitioners with work experience of
plug-and-play systems from the health-care, business and industrial
control system (ICS) domains. The interviews were conducted at
the latest stage of our study in order to examine whether the em-
pirical findings can be useful in practice. Our data is released at:
https://github.com/SoftwareDesignLab/AchillesHeel.

This paper is organized as follows: Section 2 provides an overview
of the methodology used in this empirical study; Section 3 discusses
the results of our empirical study; Section 4 compares our results
with those from the literature; Section 5 presents our interviews
with practitioners; Section 6 describes the threats to the validity of
this work; and Section 7 concludes the paper.

2 METHODOLOGY
A grounded theory [21, 51] approach is a progressive identification
and integration of concepts from data that leads to discoveries
directly supported by empirical evidence. The classical grounded
theory [19] encompasses the following activities: identification of
topic of interest, theoretical sampling, data coding (through open,
selective and theoretical coding), constant comparative analysis,
memo writing,memo sorting andwrite up & literature review [20, 52].
Figure 1 shows how we applied the classical grounded theory to
our research that was conducted over the period of one year.

2.1 Limiting the Phenomena Under Study
In following a grounded theory approach, researchers are advised
against formulating a specific research question upfront; rather,
they define an area of interest (i.e., the phenomena under ob-
servation). As illustrated in Figure 1, the focus of this empirical
study is the “Achilles’ heel” (vulnerabilities) in plug-and-play sys-
tems. We focused on vulnerabilities specific to the plug-and-play
architecture itself - i.e., security issues that are enabled due to the
extensibility mechanisms provided by plug-and-play environments
and are specific to such architecture.

2.2 Data Collection: Theoretical Sampling
Given the topic of interest of this work, we needed access to soft-
ware vulnerability reports, the description of these vulnerabilities,
in-depth discussion about how they occurred and were fixed, as
well as information about the architectural decisions of the projects
affected by these security problems. Thus, we targeted data sources
that were freely accessible to us. In this context, we focused on
open source systems with a plug-and-play software architecture.

2.2.1 Theoretical Sampling. is the process of jointly gathering and
analyzing data in order to decide what data needs to be collected
next [19, 21, 52]. Our theoretical sampling started with two open
source projects (Chromium and Thunderbird) to extract and an-
alyze their vulnerability reports. From an initial analysis of these
reports, we observed that Thunderbird and Chromium had over-
lapping concepts since they were from a similar domain. Therefore,
we included more projects of which we extracted and analyzed
their vulnerabilities. The additional projects were Firefox,Word-
Press, and Pidgin. Although Firefox and Chromium were from
the same domain, adding them could help us pinpoint problems that
are only applicable to Web browsers and other, more generalizable
concepts. In the later stages (after we identified our core categories),
we sampled more open source projects from different domains. We
included OpenMRS and Apache OfBiz for further analysis and
to support the findings of our empirical study, as per the approach
suggested by the classical grounded theory.

2.2.2 Data Sources. We used the National Vulnerability Database
(NVD) to extract vulnerability meta-data, Issue Tracking Systems to
obtain further discussions about the problem, Source Code Reposito-
ries to identify fixes for these vulnerabilities, and Technical Docu-
ments to explain the underlying plug-and-play mechanisms of the
affected software project. The process of extracting data from these
sources is described below:

https://github.com/SoftwareDesignLab/AchillesHeel

Achilles’ Heel of Plug-and-Play So�ware Architectures ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Methodology version 13-FSE’19

Topic of Interest
(Vulnerabilities in

Plug-and-Play
Systems)

Data Collection
(via Theoretical

Sampling)
(Automated

Filtering of CVEs
Related with

Plug-and-Play)

Open Coding
(Coding of

CVE Reports)

Memo
Writing

(Rationale &
Root Causes)

Constant
Comparative

Analysis
(Relating

Similar CVEs
and Codes)

Data Collection
(via Theoretical

Sampling)
(CVEs Related
with the Core
Categories)

Selective
Coding

(Refinement
of Codes)

Memo
Writing

(Taxonomy
Development)

Constant
Comparative

Analysis
(Theoretical
saturation –

vuln. types &
mitigations)

Sorting
(Vuln. types,

contexts,
mitigations,

consequences)

Theoretical
Coding

(Taxonomy)
Write Up

Figure 1: The Grounded Theory Approach Applied to our Work

• Retrieving vulnerabilities from NVD: We obtained the vul-
nerability reports from the National Vulnerability Database
through parsing their public data feeds [35]. Vulnerabilities
disclosed in NVD are assigned a unique Common Vulnera-
bilities and Exposures Identifier (CVE ID). Along with this
identifier, NVD also provides a concise description of the
problem, a list of affected software releases, and a list of Web
sites (references) that contain more details about the problem.

• Identifying vulnerability details from Issue Tracking Systems:
Although CVE reports provide a description of the security
problem, they do not contain a detailed discussion about
the vulnerability such that we could verify its underlying
root cause, consequences or other information. Thus, we
identified the URLs to the corresponding bug entry of the
issue tracking system of the case study. This way, we read
the developers’ discussion about the problem and how they
developed a solution. We leveraged the list of “references”
for the CVE and identified which of these links referred to
the issue tracking system of the corresponding case study.

• Collecting vulnerability patches from Source Code Reposito-
ries: To retrieve patches that fixed the vulnerabilities, we
extracted the commits that referred to the corresponding
bug entry in the issue tracking systems (i.e., commits whose
message explicitly mentions the bug id). These patches con-
tained the files that were affected (i.e., modified, added or
removed) in the fix. Identifying patches help us to verify the
solution applied by developers to repair the software.

• Identifying design decisions for enabling Plug-and-Play: We
reviewed available literature, existing technical documenta-
tion, posts in the projects’ issue tracking systems and existing
architectural diagrams of each case study in order to identify
their design decisions for supporting plug-and-play features
and any security mechanism adopted for protecting their
PnP environment. We also reviewed their source code to
understand the structure of the application and technical de-
cisions. This review was conducted using a keyword search,
manually browsing the source code, and reading any code
comments or “readme” files as well as the release reports. We
compiled our findings in a trace matrix which enumerates

Figure 2: Information Model for the Collected Data

Table 1: Keywords used for Automatically Filtering CVEs
Case Study Keywords

Firefox extension, bundle, theme, add on, add-on, addon, plugin, plug-in, dictionary, xpi, pack
Chromium extension, plug-in, plugin, app

Thunderbird extension, bundle, theme, add on, add-on, addon, plugin, plug-in, dictionary, xpi, pack
Wordpress plug-in, plugin, theme

Pidgin plug-in, plugin
OfBiz plug-in, plugin

OpenMRS plug-in, plugin, add on, add-on, addon

where each PnP mechanism is implemented in the source
code. Each project’s trace matrix of PnP design decisions to
source files was peer-reviewed.

2.2.3 Data Fusion. By the end of an iterative data collection and
theoretical sampling process, we collected a total of 3,183 vulner-
ability reports (CVEs) and associated data, such as issue tracking
system reports and discussions as well as patches involved in the fix.
Each of the artifacts contributed to a comprehensive understanding
of the CVE under inspection. Figure 2 shows the information model
of the vulnerability data we collected after performing the steps
enumerated above. We used three complementary approaches to
identify the subset of vulnerabilities (CVE instances) associated
with the systems’ plug-and-play architecture:

• Component-Based Approach: The issue tracking entries to fix
CVEs often have an attribute indicating the affected software
component, which is declared by the original project devel-
opers. Thus, we leveraged this component tag to identify
CVEs that are potentially related to their extensible archi-
tecture. To do so, we defined a list of component tags that
are associated with the plug-and-play architecture of each
case study. This list was established after a careful review
of the projects’ technical documents and source code. Next,
we filtered all the issue tracking reports whose bug matched
the component tag of our subset. Lastly, we traced the bug
ids of these entries back to their associated vulnerabilities
(CVE instances) to identify the subset of CVEs that were
potentially related to securing their extensible architecture.

• Keyword-Based Approach: we established a list of keywords
that reflected the terminology developers used to refer to
the plug-and-play architecture of each case study. These key-
words were searched on the descriptions of the retrieved
CVEs to identify those related to plug-ins. Table 1 enumer-
ates the keywords used per case study.

• File-Based Approach: We used the traceability matrix of PnP
mechanisms to source files developed during our data col-
lection (Section 2.2.2) to locate plug-in related source files.
The plug-in related CVEs were identified by mapping the
files in the trace matrix to the source files affected by CVEs.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Joanna C. S. Santos, Adriana Sejfia, Taylor Corrello, Smruthi Gadenkanahalli, and Mehdi Mirakhorli

The goal of these three complementary approaches was to maxi-
mize the recall of all CVEs related to the plug-and-play architecture.
Table 2 shows the total number of retrieved CVEs (column “# CVEs”),
how many of these CVEs were selected after applying the three
previous approaches (column “# Analyzed CVEs”), and lastly the
total number of CVEs related to plug-and-play architecture after
a manual review (“# Plugin-related CVEs”). In this manual review,
we considered a vulnerability as plugin-related if it was caused by
(i) a lack of mitigation procedures in the PnP core to stop misuses
from malicious plug-ins or consequences of security bugs in benign
plug-ins, (ii) an inappropriate design choice for mitigating the se-
curity issues (design-level), or (iii) an incorrect implementation of
design decisions in the core (correct design-level choices, but an
incorrect implementation in the code).

Table 2: Statistics of the Vulnerability Data Used in this
Study

Case Study # CVEs #Analyzed CVEs #Plugin-related CVEs
Firefox 1396 156 68

Chromium 1252 169 73
Thunderbird 704 85 37
Wordpress 433 221 91

Pidgin 69 34 32
OfBiz 7 1 1

OpenMRS 4 1 1

2.2.4 Data Preprocessing. After collecting, merging and filtering
the vulnerability artifacts, we conducted a preprocessing step to
summarize the data for us to start the coding of the data based on the
grounded theory principles. The data preprocessing was performed
by the authors, who systematically scrutinized the subset of CVEs
(and its associated artifacts - see Figure 2) that were identified using
the three complimentary automated approaches described in the
previous step. The vulnerability reports were summarized by filling
out a form containing specific sections for context (the underlying
scenario in which the vulnerability occurred), problem (fine-grained
root cause) and solution (how it was fixed).

These summaries were important forminimizing the information
load while coding and constantly comparing a large amount of data.
All summaries are also released through the link to study package.

2.3 Open Coding
After preparation of the data, the first step was the open coding [20,
21] of the vulnerability summaries. It consists of analyzing each
incident (i.e., data point) in order to annotate them with codes
(concepts). This coding was performed by the authors of this paper,
whose software development experience level varied from 2-10
years. During this process, we analyzed each of the previously
collected plugin-related CVE summaries and reviewed its context,
problem, and solution (and any other details available in the issue
tracking system or other sources as needed). After reviewing the
CVE information, we collaboratively highlighted the key points in
the summaries, then based on these key points they assigned codes
to the vulnerability. The codes were used as delegates for concepts
and key points involved in vulnerability.

These codes are constantly refined throughout the open coding
process, leading to the emergence of a core category and its asso-
ciated concepts. The core category is the main concern or problem
observed in the phenomena under study; it “accounts for a large por-
tion of the variation in a pattern of behaviour” [19]. Please note that

in further iterations many of these codes were grouped into core
categories. Figure 3 shows the summary report collected for three
CVEs. For instance, in case of CVE-2015-4498, the key points are
highlighted in red color: add-on installation, allows remote attackers
to bypass an intended user-confirmation, warns the user, bypass this
install warning dialog, installation of the add-on will start without
the dialog, and block cross-origin add-on install request. Each of these
were assigned a code, example of codes generated for this summary
are: Not showing install warning dialog; Silent install of plug-ins;
Block cross-origin install requests.

2.4 Constant Comparison Method
The codes emerging from each CVE summary were constantly
compared against the existing codes to observe commonalities
and differences (which could result in a further break down of
these codes into more fine-grained levels). Emerging codes were
compared against other vulnerability reports in order to observe
their properties (such as potential mitigations and types of con-
sequences). Furthermore, CVE instances were compared against
other vulnerability reports to establish uniformity of concepts and
identify variations. Through constant comparison, we observed
that some key points reoccurred; such key points were used to
form the core categories. For instance, in Figure 3 the key points for
CVE-2015-4498 and CVE-2011-3055 are similar, and they have been
assigned codes such as “Not showing install warning dialog,” or
“Silent install of plug-ins”. Emerging concepts were then compared
to more incidents to generate new theoretical properties of the con-
cepts and more hypotheses. The goal of the constant comparative
method is to ensure that all the concepts are supported by the data
and at the same level of granularity. We were either annotating
the CVEs with existing tags or creating new ones (i.e., the existing
tags are not suitable for the CVE being analyzed). For instance, in
the case of CVE-2012-0934 (Figure 3) none of existing codes for
CVE-2015-4498 and CVE-2011-3055 could represent it, therefore,
we created new codes for it. The result of this open coding and
constant comparative analysis iteration was the identification
core categories [19]. In our study, our core categories correspond
to the types of plug-and-play vulnerabilities.

2.5 Memoing
Throughout the iterative process of coding and constant compar-
ative analysis, the researchers captured their insights in memos.
A shared Google Document with a predefined table was used to
capture early insights. In this early stage of data analysis, our
memos mostly concerned potential core categories (PnP vulnerabil-
ity types). As the process continued, we finalized them by adding
more detailed information about consequences and mitigation tech-
niques. For these potential core categories, the memos would cap-
ture a summary of the plug-and-play vulnerability type, associated
consequences and how they could be mitigated. Table 3 illustrates a
sample memo captured by an analyst during the memoing process.

2.6 Selective Coding
The selective coding of our methodology focused on theoretically
saturating the architectural and related concepts. In this step we
returned to the CVE instances that were associated with plug-and-
play vulnerability types in order to further refine them, capturing

Achilles’ Heel of Plug-and-Play So�ware Architectures ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

CVE-2015-4498

Description: The add-on installation feature in Firefox before 40.0.3 allows
remote attackers to bypass an intended user-confirmation requirement
by constructing a crafted data: URL and triggering navigation to an arbitrary
http: or https: URL.
Problem: Normally, Firefoxwarns the user when trying to install an add-on
if this install request was initiated by a Web page. The users must explicitly
accept that the add-on continue installing. However, there is one exception in
which the dialog will not be shown, which is when the user pastes the direct
link in the URL bar. An attacker could leverage this exception scenario to by-
pass this install warning dialog. Basically, an attacker could create links to
Web pages that redirects to the location of the add-on’s bundle (XPI file). When
the user clicks on the link, the Web browser will follow the chain of redirects,
and the installation of the add-on will start without the dialog.
Solution: Fix is to block cross-origin add-on install requests.

Codes: “Not showing install warning dialog,” “Silent install of plug-ins,” and
“Block cross-origin install requests”.

CVE-2011-3055

Description: The browser native UI in Google Chrome before
17.0.963.83 does not require user confirmation before an un-
packed extension installation, which allows user-assisted re-
mote attackers to have an unspecified impact via a crafted exten-
sion.
Problem: An attacker was able to gain access to the extensions
management page and have it load an unpacked extension with
an NPAPI plugin (see also bug 117715) without generating a
prompt. Looking at the code in UnpackedInstaller::OnLoaded, it
looks like it should generate a prompt in all cases unless the
extension is disabled.
Solution: The fix is to generate the same prompts for packed
and unpacked extensions. This also fixes an issue in which we
were not prompting for unpacked extensions with plugins at in-
stallation time.

Codes: “Not showing install warning dialog,” “Silent install of
plug-ins,” “Consistent generation of install warning prompts”.

CVE-2012-0934

Description: A PHP remote file inclusion
vulnerability in ajax/savetag.php in the
Theme Tuner plugin for WordPress before 0.8
allows remote attackers to execute arbitrary
PHP code via a URL in the tt-abspath
parameter.
Problem: A remote attacker could send a spe-
cially-crafted URL request to the savetag.php
script using the tt-abspath parameter to specify
a malicious file from a remote system. This al-
lows the attacker to execute arbitrary code on
the Web server.
Solution: Fix was to remove the part of the
code that leveraged on user-provided input
to include PHP code.

Codes: “Arbitrary code execution,” “File path
traversal,” “Remote code file inclusion”.

Figure 3: Examples of Open Coding of the CVE Summaries that are Generated after Data Preprocessing.

all possible consequences observed in the data, their context of
occurrence, and how developers mitigated them. In this step and
later stages of our analysis, ourmemos encompassed development
of a conclusion for the study. To do so, we focused on rearrang-
ing (merging or breaking) our core categories for establishing a
cohesive taxonomy of vulnerability types in PnP architectures, the
context in which they occurred, their corresponding mitigations
and consequences.

2.6.1 Data Analysis Instrument. It is important to highlight that
we used a custom-built Web-based tool to support our activities of
coding the data. This Web tool presents the information retrieved
for each vulnerability report (Figure 2) and enables the researcher
to annotate the report and tag codes (i.e., concepts) to it.

2.7 Memo Sorting
At the final stages of our data analysis, we conceptually sorted our
memos. By sorting, we do not imply a chronological order; instead,
the sorting of our notes was based on inter-related concepts. The
goal of this step was to look at the data at a higher abstraction level.

2.8 Theoretical Coding
In the later stages of our analysis, we employed theoretical coding
to interconnect substantive codes. In other words, we connect the

Table 3: Sample Memo

Memo#19: Unsanitized plugin data
Problem: The core application interacts with data from the plugins. The problem
arises when this data is not properly sanitized. The application host trusts data
from the plug-in when it shouldn't because this data is crossing boundaries.
Mitigation: Introduce mechanisms that sanitize the data flowing from plugins to
the core application.
Consequence(s): Arbitrary code execution, Denial of service
Some observed examples:

- CVE-2005-0752 [Firefox]: The Plugin Finder Service (PFS) in Firefox before 1.0.3
allows remote attackers to execute arbitrary code via a javascript: URL in the
PLUGINSPAGE attribute of an EMBED tag.
- CVE-2013-0896 [Chrome]: BrowserPluginGuest trusts the shared memory region
sizes passed in messages from renderers. When the browser attaches to these
regions it does not sanity check the region sizes and can be made to write beyond
the end of the mapped region.
- CVE-2012-5328 [WordPress]: Multiple SQL injection vulnerabilities in the Mingle
Forum plugin 1.0.32.1 and other versions before 1.0.33 for WordPress might allow
remote authenticated users to execute arbitrary SQL commands.

Event Management
Architectural Concerns
Dispatching events to plug-ins is crucial for an extensible architecture. This is the mechanism to which plug-ins
are attached.

Security Problems:

Tag #4: Reentrant Event Callbacks

Architectural Violation: Reentrant event callbacks
This problem occurs when extensions can interrupt the execution of the event dispatching mechanism before it has finished,
resulting in an unpredictable state.

Architectural Mitigation:
Given that multiple events may arrive and need to be dispatched to many plug-ins, it is important to ensure that the callback
mechanism at the application host perform these operations in an atomic fashion. To mitigate the problem: while performing the
dispatch of the event to the corresponding extensions this operation is designed to be atomic such that it guarantees the correctness
of the initialization (avoid to leave the extension in an invalid state). It can be done so through a locking mechanism.

Consequence(s):

● Availability : it can cause a crash due to this corrupted state

Some observed examples:
● CVE-2016-1635 [Chrome]: Apps & extensions can make the callback routine to be invoked reentrantly, resulting in a crash

(use-after-free)
● CVE-2013-2912 [Chrome]: The resource tracker tries to use the object which is half destructed.
● CVE-2015-6772 [Chrome]: Re-entrancy while attaching a new document in a frame when an old document is being

detached (use-after-free)

8

discovered concepts, leading to the development of hypotheses
that would shape the results of our empirical study. Theoretical
coding involves applying a coding paradigm that helps researchers
to inter-connect concepts derived from the data [21]. In this cod-
ing process, we integrated our concepts and structured them into
contexts, which are the underlying scenario of the plug-and-play
vulnerability; causes, which are the contributing factors that lead
to the vulnerability; mitigations, which are techniques to fix these
issues; and the consequences which result from the vulnerabili-
ties. For instance, “auto updates” and “plug-in update” codes were
merged to form the context “Plug-in Update”; “add checks for plug-
in permission during updates” and “comparing against initial list of
permissions” formed the mitigation “Lifetime enforcement of plug-
in permission”; codes “privilege elevation”, “bypass privilege check
mechanism” formed the consequence “Privilege elevation”.

3 A TAXONOMY OF VULNERABILITIES IN
PLUG-AND-PLAY SYSTEMS

The results of this empirical study are presented in the form of a
taxonomy of vulnerability types in plug-and-play architec-
tures, learned from seven open source systems. This taxonomy
characterizes the context in which the vulnerability occur, its miti-
gation procedures, as well as its consequences.

3.1 Context: Plug-in Install
One of the most basic features in a plug-and-play system is to load
and install new plug-ins to the application. In this context, we found
the following types of problems (Figure 4):

3.1.1 Incorrect User Notification of Plug-in Permissions. When a
new plug-in is added to the system, it can request access to certain
data/functionality provided by the PnP environment. This problem
occurs when the PnP environment does not show to the user all of
the data and/or functionality that will be accessed by the plug-in
before the plug-in is installed.
— Mitigation: Devising a central point for installation logic. All the
installation requests are guaranteed to go through this component,
which is in charge of (i) consistently generating install warning
prompts before any install requests; (ii) showing all the requested
permissions.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Joanna C. S. Santos, Adriana Sejfia, Taylor Corrello, Smruthi Gadenkanahalli, and Mehdi Mirakhorli

Incorrect user notification of plugin permissions

Bypassing of user notification or restriction checking
processes for plugin installation

Lack of plugin’s configuration file sanitization

Lack of compartmentalization of plugins

Improperly checking the origin of an install request

Allowing a plugin to elevate its permission by
manipulating (or delegating a task to) a process in the

PnP environment that has higher privileges

Lack of finegrained and modular permission setting

Plugins requests are handled without authorizing
plugins that initiate the request

Isolated Object Domains

Central point for installation logic

Configuration validator

Reentrant event callbacks

Extraction/storage of plugin with world
readable/writable permissions or in unsafe directories

Improper object access control in compartmentalized
PnP environment

Unsanitized plugin data

Improper origin check of requests by plugins

Improper isolation of objects used by plugins in PnP
environment

Plugin
Execution

Plugins
installation

Whitelist of install origins

Plugins
Request
Handling

Privilege elevation

Misleading the user to install a plugins, Spoofed origin of an
install request

Elevation of privilege through a plugin update
Update
Plugins Lifetime enforcement of plugin permissions

Dedicated secure Storage

Overprivileged plugin

Compartmentalization of plugins

Finegrained, modular, permission assignment

Declarativebased request for accessing data/functionality

Crosssite scripting (XSS), Steal credentials, Code injection,
Arbitrary code execution, Memory corruption, SQL Injection

Limit plugins exposure to OS processes

Decomposition of events

Hide PnP internal events

Atomic event dispatcher

Modify/Erase plugin data, Replace a benign plugin with a
malicious one, Symlink attack

Plugins tampering with other plugins, Data leakage to
unintended plugins, Arbitrary code execution

Plugins tampering with other plugins, Data leakage to
unintended plugins, Arbitrary code execution, Sameorigin

policy bypass

Override intended plugin behavior, Data leakage to other plug
ins, Bypass protection mechanism, Application crash, Sandbox
and compartment escape, Overwrite memory, Code injection

Limit plugins exposure to High privilege PnP APIs

Security Policy Enforcement through Object Wrappers

Input validation of incoming plugin data

Origin Check

Authorize the source of a request

Stealth installation of malicious plugins

Arbitrary code execution, Privilege elevation, Data leakage,
Directory path traversal, Application crash

Gain privileges, Spoofing, Userassisted attack

Arbitrary code execution, Privilege elevation

GRAPH STRUCTURE IN PROGRESS

Arbitrary code execution

Arbitrary code execution, Disrupt the PnP execution
environment, Privilege elevation

Spoofing the origin of a plugin install request Hijack of origin of an install request Secure exchange of plugin resources

Unexpected state, DoS: PnP environment crash

FIGURE 5

Figure 4: Vulnerability Types, Mitigations and Consequences in the Context of Plug-ins installation

3.1.2 Bypassing of User Notification or Restriction Checking Pro-
cesses for Plug-in Installation. Whenever a new install is requested,
the PnP environment should ask the user for consent to proceed
(or abort) the install. This vulnerability type is caused when the
requirement that the user mediate all install requests is not strictly
enforced.
—Mitigation: Likewise in “Incorrect user notification of plug-in
permissions”, the mitigation consists on designing a Central point
for installation logic (see Section 3.1.1).

3.1.3 Lack of Plug-in’s Configuration File Sanitization. It is caused
by not validating the plug-in’s configuration file to verify whether
it is structurally and semantically correct as well as to escape/neu-
tralize any code that is injected in the plug-in’s configuration file.
—Mitigation: Designing and implementing a configuration valida-
tor that performs typed parsing and configuration files validation
to prevent these files to be used as an attack vector.

3.1.4 Extraction/Storage of Plug-in with World-readable/writable
Permissions or in Unsafe Directories. In general, plug-ins are re-
leased as software bundles (e.g., zip files) that are extracted by
the PnP environment. When the PnP environment extracts and/or
stores these bundles using world-readable (or writable) permissions
(e.g. 777 permissions in Unix-based operating systems), any other
plug-in or a potentially external process can alter plug-ins’ data or
code.
—Mitigation: Having a dedicated secure storage such that the ap-
plication extracts the software bundle to the application’s dedicated
folder, that has restricted admin-only access.

3.1.5 Spoofing the Origin of a Plug-in Install Request. It is caused by
not enforcing that the install request (followed by a transfer of the
plug-in’s resources) will be made through a secure communication
channel. An intruder can conduct a man-in-the-middle attack to
spoof the origin of an install request and being able to trick the
user into installing a potentially malicious plug-in.
—Mitigation: Performing a secure exchange of plug-in resources by
using a secure communication protocol (e.g. HTTPS).

3.1.6 Improperly Checking the Origin of an Install Request. It oc-
curs when the PnP environment accepts install requests initiated
either by the user or an external entity (i.e., a remote install), but it
incorrectly checks the source (origin) of the install request.
—Mitigation: Having a whitelist of install origins that specifies safe
install points and only allowing these to trigger installation. This
avoids giving a malicious code or other attack vectors the ability to
silently install a plug-in.

3.2 Context: Plug-in Updates
A PnP system allows that plug-ins are updated whenever a new
version is available. In this case, the system applies the needed
changes to the plug-in registry. In this context, we found the fol-
lowing vulnerability types (Figure 5):

3.2.1 Elevation of Privilege through a Plug-in Update. It occurs
when plug-ins specify a list of privileges upon install and the user
accepts these permissions. However, the PnP environment does
not check for the changes in privileges of plug-ins after an update.
Therefore, a plug-in can elevate its permissions through a plug-in
update without user consent.
— Mitigation: Performing a lifetime enforcement of plug-in per-
missions. During a plug-in update, the application compares the
current request permissions against the previous list of permissions
provided by plug-in during install.

3.3 Context: Plug-and-Play Execution
Environment

Since plug-ins are not executable (i.e., standalone programs), their
execution environment is provided by the host application. The PnP
application core is in charge of orchestrating the execution of multi-
ple and concurrent plug-ins. During execution, the PnP application
can be prone to the following security problems (Figure 6):

3.3.1 Lack of Compartmentalization of Plug-ins. It is caused by a
lack of a well-defined logical compartment that isolates plug-ins
from each other as well as from the PnP environment. In this case,
plug-ins are allowed to directly communicate with each other and
use the core’s resources without appropriate restrictions.
—Mitigation: There are two complementary approaches to fix this
problem. Ensuring a compartmentalization of plug-ins in which each
plug-in is encapsulated in a separate compartment. Also having
isolated object domains such that each compartment must have its
own copy of objects for communication with the PnP environment.
It minimizes the risk of the same object being used by another
plug-in. As a result, the PnP environment manages these objects
and enforces that these objects are not used as an attack vector.

3.3.2 Lack of Fine-grained and Modular Permission Se�ing. Many
vulnerabilities observed in our analysis were due to benign plug-ins
that had more privileges than needed to implement their features.
A fine-grained and modular permission setting could have limited
the access of such plug-ins, and therefore minimizing the impacts
of vulnerabilities in these plug-ins on the application core.

Achilles’ Heel of Plug-and-Play So�ware Architectures ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Incorrect user notification of plugin permissions

Bypassing of user notification or restriction checking
processes for plugin installation

Lack of plugin’s configuration file sanitization

Lack of compartmentalization of plugins

Improperly checking the origin of an install request

Allowing a plugin to elevate its permission by
manipulating (or delegating a task to) a process in the

PnP environment that has higher privileges

Lack of finegrained and modular permission setting

Plugins requests are handled without authorizing
plugins that initiate the request

Isolated Object Domains

Central point for installation logic

Configuration validator

Reentrant event callbacks

Extraction/storage of plugin with world
readable/writable permissions or in unsafe directories

Improper object access control in compartmentalized
PnP environment

Unsanitized plugin data

Improper origin check of requests by plugins

Improper isolation of objects used by plugins in PnP
environment

Plugin
Execution

Plugins
installation

Whitelist of install origins

Plugins
Request
Handling

Privilege elevation

Misleading the user to install a plugins, Spoofed origin of an
install request

Elevation of privilege through a plugin update
Update
Plugins Lifetime enforcement of plugin permissions

Dedicated secure Storage

Overprivileged plugin

Compartmentalization of plugins

Finegrained, modular, permission assignment

Declarativebased request for accessing data/functionality

Crosssite scripting (XSS), Steal credentials, Code injection,
Arbitrary code execution, Memory corruption, SQL Injection

Limit plugins exposure to OS processes

Decomposition of events

Hide PnP internal events

Atomic event dispatcher

Modify/Erase plugin data, Replace a benign plugin with a
malicious one, Symlink attack

Plugins tampering with other plugins, Data leakage to
unintended plugins, Arbitrary code execution

Plugins tampering with other plugins, Data leakage to
unintended plugins, Arbitrary code execution, Sameorigin

policy bypass

Override intended plugin behavior, Data leakage to other plug
ins, Bypass protection mechanism, Application crash, Sandbox
and compartment escape, Overwrite memory, Code injection

Limit plugins exposure to High privilege PnP APIs

Security Policy Enforcement through Object Wrappers

Input validation of incoming plugin data

Origin Check

Authorize the source of a request

Stealth installation of malicious plugins

Arbitrary code execution, Privilege elevation, Data leakage,
Directory path traversal, Application crash

Gain privileges, Spoofing, Userassisted attack

Arbitrary code execution, Privilege elevation

GRAPH STRUCTURE IN PROGRESS

Arbitrary code execution

Arbitrary code execution, Disrupt the PnP execution
environment, Privilege elevation

Spoofing the origin of a plugin install request Hijack of origin of an install request Secure exchange of plugin resources

Unexpected state, DoS: PnP environment crash

FIGURE 5

Figure 5: Vulnerability types, mitigations and consequences in the context of plug-ins update

Incorrect user notification of plugin permissions

Bypassing of user notification or restriction checking
processes for plugin installation

Lack of plugin’s configuration file sanitization

Lack of compartmentalization of plugins

Improperly checking the origin of an install request

Allowing a plugin to elevate its permission by
manipulating (or delegating a task to) a process in the

PnP environment that has higher privileges

Lack of finegrained and modular permission setting

Plugins requests are handled without authorizing
plugins that initiate the request

Isolated Object Domains

Central point for installation logic

Configuration validator

Reentrant event callbacks

Extraction/storage of plugin with world
readable/writable permissions or in unsafe directories

Improper object access control in compartmentalized
PnP environment

Unsanitized plugin data

Improper origin check of requests by plugins

Improper isolation of objects used by plugins in PnP
environment

Plugin
Execution

Plugins
installation

Whitelist of install origins

Plugins
Request
Handling

Privilege elevation

Misleading the user to install a plugins, Spoofed origin of an
install request

Elevation of privilege through a plugin update
Update
Plugins Lifetime enforcement of plugin permissions

Dedicated secure Storage

Overprivileged plugin

Compartmentalization of plugins

Finegrained, modular, permission assignment

Declarativebased request for accessing data/functionality

Crosssite scripting (XSS), Steal credentials, Code injection,
Arbitrary code execution, Memory corruption, SQL Injection

Limit plugins exposure to OS processes

Decomposition of events

Hide PnP internal events

Atomic event dispatcher

Modify/Erase plugin data, Replace a benign plugin with a
malicious one, Symlink attack

Plugins tampering with other plugins, Data leakage to
unintended plugins, Arbitrary code execution

Plugins tampering with other plugins, Data leakage to
unintended plugins, Arbitrary code execution, Sameorigin

policy bypass

Override intended plugin behavior, Data leakage to other plug
ins, Bypass protection mechanism, Application crash, Sandbox
and compartment escape, Overwrite memory, Code injection

Limit plugins exposure to High privilege PnP APIs

Security Policy Enforcement through Object Wrappers

Input validation of incoming plugin data

Origin Check

Authorize the source of a request

Stealth installation of malicious plugins

Arbitrary code execution, Privilege elevation, Data leakage,
Directory path traversal, Application crash

Gain privileges, Spoofing, Userassisted attack

Arbitrary code execution, Privilege elevation

GRAPH STRUCTURE IN PROGRESS

Arbitrary code execution

Arbitrary code execution, Disrupt the PnP execution
environment, Privilege elevation

Spoofing the origin of a plugin install request Hijack of origin of an install request Secure exchange of plugin resources

Unexpected state, DoS: PnP environment crash

FIGURE 5

Figure 6: Vulnerability types, mitigations and consequences in the context of plug-ins execution

—Mitigation: The application host has a fine-grained, modular, per-
mission assignment by creating logical groups of functionalities/data
that are only available if a plug-in has the necessary permissions.
In conjunction, the application implements a declarative-based re-
quest for accessing data/functionality in which the plug-ins have to
explicitly indicate what features/data they intend to utilize such
that the user grants them the permission to access those.

3.3.3 Allowing a Plug-in to Elevate its Permission by Manipulat-
ing (or Delegating a Task to) a Process in the PnP Environment that
has Higher Privileges. This vulnerability arises from the scenario in
which a plug-in, executing in an unprivileged process, tampers with
a high-privileged process in order to escape its security boundaries.
— Mitigation: The application limits plug-ins exposure to OS pro-
cesses by leveraging a mechanism that intermediates any system
call between the sandboxed child process and the underlying OS
to prevent the low-privileged process to attempt to communicate
with other higher-privileged processes. In addition, the application
limits plug-ins exposure to high-privilege PnP APIs. As a result, the
access that plug-ins have to higher privileged APIs provided by the
core application should be limited according to the permissions
they have asked for and the privileges they have.

3.3.4 Improper Object Access Control and Compartmentalization
Enforcement. When plug-ins are isolated in different logical com-
partments, they communicate with each other through object prox-
ies. Each different type of proxy enforces a set of compartments’ ac-
cess policies. Security issues can occur when the PnP environment
uses an incorrect proxy for inter-compartments communication.
— Mitigation: Performing a security policy enforcement through
object wrappers. It adopts different types of object wrappers that
act as proxies for a real object residing in a different compartment.
These wrappers apply a security policy which enforces what type
of properties and operations would get accessed by the callee com-
partment depending on the relationship between the caller and the
callee compartments.

3.3.5 Unsanitized Plug-in Data. The core application interacts with
data from plug-ins. Security problems arise when the PnP environ-
ment trusts data from the plug-in and therefore does not properly
sanitize the data.
— Mitigation: Performing an input validation of incoming plug-in
data such that any data transferred by plug-ins to the PnP environ-
ment are sanitized prior use.

3.3.6 Improper Origin Check of Requests by Plug-ins. It can result
in a security breach when the PnP environment fails to correctly
check the origin of requests (i.e., who was the plug-in that initiated
a call), therefore allowing the elevation of privilege attack.
— Mitigation: Performing an origin check to verify request origins
and authenticate plug-ins requests against a security policy.

3.3.7 Improper Isolation of Objects Used by Plug-ins in the PnP
Environment. Plug-ins attach to the PnP environment through well-
defined public interfaces/APIs provided by the PnP environment.
The interaction between plug-ins and the PnP environment occurs
through these APIs. Security problems can occur when plug-ins
and the PnP environment share the same objects or data structures
of these APIs. As a result, plug-ins can interfere with the PnP
environment or other plug-ins.
— Mitigation: Similar to Section 3.3.1, this vulnerability can be
mitigated through isolated object domains.

3.4 Context: Plug-ins Request Handling
As part of plug-in execution, the application core has to handle
plug-ins requests through API calls. In this context, we found the
following vulnerability types (Figure 7):

3.4.1 Plug-ins Requests are Handled without Authorizing Plug-ins
that Initiate the Request. Vulnerabilities arise when the plug-and-
play environment accepts any call from a plug-in without checking
whether the plug-in is authorized to make such an API call.
— Mitigation: Three complementary approaches can be used. The
PnP host can authorize the source of request: Upon a request, PnP
host must authorize the plugin that initiates a request or subscribes

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Joanna C. S. Santos, Adriana Sejfia, Taylor Corrello, Smruthi Gadenkanahalli, and Mehdi Mirakhorli

Incorrect user notification of plugin permissions

Bypassing of user notification or restriction checking
processes for plugin installation

Lack of plugin’s configuration file sanitization

Lack of compartmentalization of plugins

Improperly checking the origin of an install request

Allowing a plugin to elevate its permission by
manipulating (or delegating a task to) a process in the

PnP environment that has higher privileges

Lack of finegrained and modular permission setting

Plugins requests are handled without authorizing
plugins that initiate the request

Isolated Object Domains

Central point for installation logic

Configuration validator

Reentrant event callbacks

Extraction/storage of plugin with world
readable/writable permissions or in unsafe directories

Improper object access control in compartmentalized
PnP environment

Unsanitized plugin data

Improper origin check of requests by plugins

Improper isolation of objects used by plugins in PnP
environment

Plugin
Execution

Plugins
installation

Whitelist of install origins

Plugins
Request
Handling

Privilege elevation

Misleading the user to install a plugins, Spoofed origin of an
install request

Elevation of privilege through a plugin update
Update
Plugins Lifetime enforcement of plugin permissions

Dedicated secure Storage

Overprivileged plugin

Compartmentalization of plugins

Finegrained, modular, permission assignment

Declarativebased request for accessing data/functionality

Crosssite scripting (XSS), Steal credentials, Code injection,
Arbitrary code execution, Memory corruption, SQL Injection

Limit plugins exposure to OS processes

Decomposition of events

Hide PnP internal events

Atomic event dispatcher

Modify/Erase plugin data, Replace a benign plugin with a
malicious one, Symlink attack

Plugins tampering with other plugins, Data leakage to
unintended plugins, Arbitrary code execution

Plugins tampering with other plugins, Data leakage to
unintended plugins, Arbitrary code execution, Sameorigin

policy bypass

Override intended plugin behavior, Data leakage to other plug
ins, Bypass protection mechanism, Application crash, Sandbox
and compartment escape, Overwrite memory, Code injection

Limit plugins exposure to High privilege PnP APIs

Security Policy Enforcement through Object Wrappers

Input validation of incoming plugin data

Origin Check

Authorize the source of a request

Stealth installation of malicious plugins

Arbitrary code execution, Privilege elevation, Data leakage,
Directory path traversal, Application crash

Gain privileges, Spoofing, Userassisted attack

Arbitrary code execution, Privilege elevation

GRAPH STRUCTURE IN PROGRESS

Arbitrary code execution

Arbitrary code execution, Disrupt the PnP execution
environment, Privilege elevation

Spoofing the origin of a plugin install request Hijack of origin of an install request Secure exchange of plugin resources

Unexpected state, DoS: PnP environment crash

FIGURE 5

Figure 7: Vulnerability types, mitigations and consequences in the context of plug-ins requests handling

to an event. Decomposing the events into sensitive and non-sensitive
events. Listeners can only subscribe to sensitive events if and only
if they have enough permissions. Moreover, hiding PnP internal
events such that any events and APIs specific to PnP environment
must be hidden (inaccessible) from plug-ins.

3.4.2 Reentrant Event Callbacks. Plug-ins can interrupt the exe-
cution of the event-dispatching mechanism before it has finished,
resulting in an unpredictable state.
— Mitigation: Designing an atomic event dispatcher. Given that
multiple events may arrive at the application and need to be dis-
patched to many listener plug-ins, it is important to ensure that
the callback mechanism in the PnP environment performs these
operations in an atomic fashion.

4 ARE THE FINDINGS SUPPORTED BY THE
LITERATURE?

After completion of the grounded theory, we conducted a System-
atic Literature Review (SLR) to examine whether the findings of
this empirical study are supported by the literature or complement
the existing body of work.

4.1 Methodology
The search strategy [61] of our systematic literature review con-
sisted of a manual search for works from four sources: the ACM
Digital Library, IEEE Explore Library, ScienceDirect, and Springer
Link. Our inclusion criteria were as follows: the work was (i) a full
paper; and (ii) focused on discussing security problems on plug-
and-play software architectures. Exclusion criteria were (i) position
papers, short papers, tool demo papers, keynotes, reviews, tutorial
summaries, and panel discussions; (ii) not fully written in English;
(iii) duplicated study, and (iv) focused on a research problem outside
the domain of plug-and-play software architectures. In our manual
search, we used the following search query: (plug-in OR plugin OR
extension) AND (security OR vulnerability OR vulnerabilities).

From our manual search, we collected a total of 11,053 papers.
We applied our inclusion and exclusion criteria through reading
the paper’s title, abstract and keywords (if present), resulting in 205
papers. Then, in this round we applied the inclusion and exclusion
criteria by reading the full papers, resulting in a remaining 35
papers. These remaining papers were carefully reviewed, to verify
the extent to which the findings from our study were supported by
the literature or were complementary.

4.2 Results
Table 4 enumerates the vulnerability types, their mitigations and
contexts that were (or were not) discussed in the literature. The
columns with a star (?) symbol indicate a concept that has been
discussed in the literature but we have not observed from the data

we collected in our empirical study. The bullet symbol (•) indicates
a finding that has not been previously explored by the literature.

Table 4: Comparison with the literature
Context Problem Solution

Incorrect user notification of plug-in permissions [2,
42, 55]

Central point for installation logic •

Anomaly-based detection method [15]?
Emulation-based mitigation technique [15]?Bypassing user notification or restriction checking

process for plug-in installation [15] Central point for installation logic •
Lack of plug-ins configuration file sanitization • Configuration validator •
Extraction/storage of plug-in with world-readable /
writable permissions or in unsafe directories [9, 24]

Dedicated secure storage [9]

Spoofing the origin of a plug-in install request • Secure communication of plug-in resources [18]

Plug-ins
installation
[9, 38, 39]

Improperly checking the origin of an install request •Whitelist of install origins •
Plug-ins
update [9] Elevation of privilege through a plug-in update [44] Lifetime enforcement of plug-in permissions •

Isolated object domains [24, 29, 38, 39, 44]Lack of compartmentalization of
plug-ins [13, 16, 24, 34, 53] Compartmentalization of plug-ins [27, 41, 45]

Fine-grained, modular, permission assignment [7]Lack of fine-grained and modular permission
setting [6, 16, 27, 44]

Declarative-based request for accessing data/func-
tionality [29, 50]
Limit plug-ins exposure to High privilege PnPAPIs
•

Runtime monitoring of plug-in’s behavior [24,
41]?

Allowing a plug-in to elevate its permission by
manipulating (or delegating a task to) a process in
the PnP environment that has higher
privileges [27, 29] Limit plug-ins exposure to OS processes [27, 41]

Name-based access control [29]?Improper object access control in compartmentalized
PnP environment [28, 29, 41, 44]

Security Policy Enforcement through ObjectWrap-
pers [41, 44]
Client-side defense using XSS filters [33, 36]?Unsanitized plug-in data

[11–13, 31, 33, 36, 37, 40, 49, 54, 56] Input validation of incoming plug-in data •
Improper origin check of requests by plug-ins [24, 39,
50]

Origin check •

Plug-and-
Play

execution
environment
[6, 27, 29, 31,
34, 37, 41, 50,

62]

Improper isolation of objects used by plug-ins in PnP
environment [24, 27, 39, 44, 45]

Isolated object domains [24, 29, 38, 39, 44]

Authorize the source of events •
Decomposition of events •Plug-ins requests are handled without authorizing

plug-ins that initiate the request • Hide PnP internal events •

Plug-ins
Request

Handling • Reentrant event callbacks [17] Atomic event dispatcher •

As shown in Table 4, previous works support our empirical find-
ings with regards to the context aspects of common vulnerabilities,
except in case of issues that occurred during API request handling.
We discovered 4 vulnerability types not covered in the literature,
which were: lack of plug-in’s configuration file sanitization, spoofing
the origin of a plug-in install request, improperly checking the ori-
gin of an install request, and plug-ins requests are handled without
authorizing plug-ins that initiate the request. Our taxonomy also
covers 11mitigation techniques that we learned from our data. The
literature had covered 5 types of mitigation techniques that we
have not observed in our empirical study.

5 PRACTITIONERS PERSPECTIVE ON
FINDINGS

We interviewed six practitioners with work experience in design,
development or penetration testing of plug-and-play systems (Ta-
ble 5). The interview format was semi-structured initiated with
three questions and other questions were asked as the discussion
evolved. Throughout the interview, each vulnerability type and its
mitigation technique were discussed. The initiating questions were:
— IQ1: Would this taxonomy have helped you to discover and/or
prevent vulnerabilities in your system associated with the use of plug-
ins? Please explain.
— IQ2: Based on your experience, do you consider that the taxonomy
covers all the types of vulnerabilities you have seen? Do you remember
of any plug-in-related vulnerability that did not fit the framework?

Achilles’ Heel of Plug-and-Play So�ware Architectures ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 5: Interviewed practitioners
Practitioner Medium Background

P1 In-person Senior developer. Had work experience with plugin-based systems

P2 In-person
Penetration tester for “IoTcompany ” (anonymized). Has over two
years on penetration testing of plug-and-play systems in the Internet of
Things (IoT) domain.

P3 Conference
call

Principal architect at anonymized . Over 15 years of experience and
contributor of the OpenMRS medical record system that uses plug-and-
play architecture

P4 E-mail Apache OFBiz long-term developer.

Marc Alff
(P5) E-mail

Software Architect (MySQL). Over 20 years of experience in
architecture, design and integration of complex, enterprise-scale
systems.

P6 E-mail Architect of a plug-in based enterprise system, with 13
years of professional experience

— IQ3: Did you consider the mitigations to be complete? Based on
your experience, do you consider there were better ways to fix such
problems?

All practitioners were provided ahead of time with a copy of
the taxonomy, a detailed explanation of the vulnerability types
covered in the taxonomy, consequences, mitigation techniques, and
the initiating questions. After interviewing all the practitioners, we
performed a qualitative analysis of the interviews. In this process,
we performed a line-by-line coding of the transcriptions and iter-
atively identified common themes across the answers as well as
positive and negative feedbacks to our taxonomy.

5.1 Results
All practitioners provided a positive answer to IQ1, indicating that
this taxonomy would be useful for them to discover and/or prevent
vulnerabilities. P4 asked our permission for the catalog to be dis-
tributed among all the members of their security team such that
they could implement some of the mitigations. Similarly, P6 also
indicated that this taxonomy gave him/her ideas to be applied in
his/her system. Marc Alff (P5) provided the following answer:

“Some of the security fixes implemented in the
past in MySQL are direct implementations of the
mitigations listed. Having access to your theory
before releasing the code in the first place would
have avoided a couple of these vulnerabilities.”

Concerning IQ2, all practitioners agreed that, to their knowledge,
the taxonomy covered in details the vulnerability types they have
seen. Furthermore, they confirmed the correctness of mitigation
techniques. P6, an architect of a plug-and-play system, offered the
following in response to IQ1 and IQ2:

“I find them thorough, but they would require a
large amount of work and rewriting some parts
of the plug-in system in our project to put all
the checks and balances in place. This is actually
giving me lots of ideas that I was unaware of.”

P2 provided the following answer for IQ1:
“Some of these are well thought of. A lot of these
are good as a checklist for penetration testing. I
have seen at least half of these vulnerability types
in industrial control systems (ICS) that work with
a plug-and-play design model.”

P3 provided the following response to IQ2:

“The taxonomy looks pretty comprehensive in
terms of covering a wide range of issues. This is
well beyond the security that we had resources
to deal with. We learned that it becomes exceed-
ingly expensive to really limit what is happening
within a JVM-based plug-and-play system. We
made a decision among the tech-leads of Open-
MRS, to accept that every plug-in that someone
chooses to install can do anything. Our plug-ins
(intentionally) share the same object that core
uses and the plug-ins intentionally have a lot of
privileges. We tried to offload the responsibility to
the system administrator to do their research for
installing the plug-ins. These are the decisions we
made for the convenience because we didn’t have
the resources to implement these mitigations.”

Regarding our IQ3, all the practitioners indicated that the miti-
gations are appropriate. One practitioner (P5) explained that:

“MySQL implements this mitigation [Dedicated
secure storage], with PLUGIN_DIR.”

5.1.1 Follow-up�estions. An emerging question after IQ1 was
concerning the presentation of our findings. We, initially, provided
to the individuals our taxonomy as a table (with a summary of the
vulnerability types, consequences and mitigations) along with a
PDF with a in-depth descriptions of these. When answering IQ1
three of them (P1, P3 and P2) hint that our findings could be used
as a checklist. We then followed up with this question:
— FQ1: Would you suggest another presentation structure for our
findings?

All of the practitioners suggested representing the findings as a
tree-like diagram, but there were discrepancies in terms of what ele-
ments should be at the top, and which ones should be leaves. These
discrepancies are mostly due to the nature of their job (architect,
developer, or pen-tester), as we can observe from the transcripts
below. P3, a software architect, provided the following answer:

“This is useful and good for communicating the
problems; I’d like to have a taxonomy like this
organized based on architectural choices and the
vulnerabilities mitigated with them. Then I can
pick up an architectural element to bring into
our system and know the vulnerabilities that are
covered.”

Similarly, P1 (a software developer) suggested :
“It probably could be presented like a decision
tree. When you go down the tree, for example,
the context is plug-in installation, then we have
the type of vulnerability.”

On the other hand, P2 (a pen tester) answered that:
“The structure of taxonomy starting from con-
text is good. It tells the penetration testers where
to starts. The first two columns [contexts and
vulnerability types] are useful, the consequences
for us is not useful as we already know these.
Mitigations are up to the company’s discretion

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Joanna C. S. Santos, Adriana Sejfia, Taylor Corrello, Smruthi Gadenkanahalli, and Mehdi Mirakhorli

(these are recommendations that we can make
for them).”

As a result of this follow up question FQ1, we revised our taxon-
omy representation in a tree like diagram (as shown in Figures 4-7).

Since our taxonomy was derived from Internet-based applica-
tions (Web browser, mail client and messaging app), we asked P2 (a
pen-tester of IoT apps) the follow-up question:

— FQ2: Have you observed any of these vulnerability types in
the IoT apps that you have been testing?

To which case P2 answered:
“I’ve seen, at least, half of these in devices.”

Such an answer indicates that even though our case studies were
in the Internet-based applications, our findings are still applicable
to different domains.

5.1.2 Common Themes on the Interviews. Plug-ins were brought
into the system at runtime using a “grant all” or a “deny all” ap-
proach. In a “Deny All” integration of plug-ins approach (ob-
served in Thunderbird, Chrome, and Firefox), plug-ins have lim-
ited access to the application’s functionalities and data by default.
Plug-ins are compartmentalized in different processes, and the host
application uses declarative permission in configuration files to
restrict plug-ins access. In a “Grant All” integration of plug-
ins, plug-ins have unrestricted access to their internal APIs, and
thereby have unrestricted access to functions and data. This ap-
proach was implemented in WordPress, Pidgin, OpenMRS, and
OfBiz. All of them lack built-in security mechanisms for protecting
the application core from plug-ins abuse/misuse (such as compart-
mentalization and access control). The underlying assumptions of
these projects were that users will be careful enough to not install
malicious plug-ins as well as that a plug-in developer would follow
secure coding guidelines and release bug-free plug-ins [60]. It is
important to highlight that we also observed this integration ap-
proach in MySQL, a non-studied project, as pointed out by Marc
Alff (P5): “There is no “second class citizen” execution environment
with constraints in place which would somehow restrict what a plug-
in has access to and what it can do.”. The rationale provided was that
“for performance reason, code from a plug-in should be as efficient
as code from the server (which excludes constrained environments).”
which is the same mentioned by P3’s answer. Besides the perfor-
mance reason underlying the decision of adopting the “Grant All”
approach, another compounding factor is the implementation costs
and efforts. Our multi-step study indicates that:

Addressing security in Plug-and-Play architecture is difficult
and expensive; many applications have either neglected secu-
rity mechanisms or have missed detailed design decisions to
address security goals. This empirical study has identified a
number of common vulnerabilities prevalent to Plug-and-Play
architectures. While these findings may not represent all the
possible ways that plug-and-play architectures can be vulner-
able, they have been considered important and useful by the
practitioners. The results can be generalized to other types
of systems, as argued by Wieringa et. al. [59], describing the
context of studied cases as we did allows us to “generalize”
the findings by analogy (i.e., findings may apply to systems

that have used architectural solutions that are partially simi-
lar to the cases of this study). For instance, the findings can
be generalizable to the automobile industry that adopts PnP
design solutions.

6 THREATS TO VALIDITY
In this section we discuss construct, internal and external threats to
the validity of this work [43] and how we mitigated them.

Construct validity concerns the degree to which the measure-
ments support our findings. In our work, this threat type is related
to whether the measures we have taken for identifying plug-in
based vulnerabilities were accurate enough to back up our find-
ings. To mitigate this threat, we followed the key principles of the
classical grounded theory and reviewed our process to assess any
deviation. We conducted peer reviews to ensure consistency when
analyzing vulnerability artifacts.

Internal validity reflects the extent to which a study minimizes
systematic error or bias so that a causal conclusion can be drawn.
One of the main threats to the internal validity of the research is
the extensive manual analysis of CVE reports to observe patterns
of incidence of vulnerabilities in these plug-and-play systems. Such
manual analysis can be prone to biases. However, our constant
comparative analysis and memos helped us to elaborate on the rea-
soning behind our codes. Moreover, our analysis process included
five individuals with security backgrounds.

External validity refers to the extent to which our results
are generalizable and applicable to other extensible software. One
threat is related to the limited number of applications used in our
study. We have not covered applications from energy, medical or
automotive domains. However, the results of SLR and interviews
indicates that our findings are supported by existing ad-hoc studies
and can be expanded to those domains.

7 CONCLUSION
We followed a grounded theory-based approach to study vulnera-
bilities in plug-and-play software systems. We contributed to an
in-depth empirical study of types of vulnerabilities found in plug-
and-play architectures based on data from several widely used
projects. In our study, we uncovered 16 vulnerability types and
19 mitigation procedures that are presented as a taxonomy. A sys-
tematic literature review was conducted to verify to what extent
previous studies corroborated with our findings as well as which
aspects of our findings complement the state-of-the-art in plug-
and-play software systems. Lastly, we interviewed six practitioners
to obtain their feedback regarding the value of our findings to the
body of knowledge in software design and development.

ACKNOWLEDGMENTS
This work was partially funded by the US National Science Founda-
tion under grant numbers CNS-1823246, CNS-1816845 and IIP-0968959
under funding from the S2ERC I/UCRC program and US Depart-
ment of Homeland Security.

Achilles’ Heel of Plug-and-Play So�ware Architectures ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire. Extraction and

evolution of architectural variability models in plugin-based systems. Softw. Syst.
Model., 13(4):1367–1394, Oct. 2014.

[2] M. Alam, X. Zhang, M. Nauman, S. Khan, and Q. Alam. Mauth: A fine-grained and
user-centric permission delegation framework for multi-mashup web services.
In 2010 6th World Congress on Services (SERVICES-1), pages 56–63. IEEE, 2010.

[3] D. Arney, S. Fischmeister, J. M. Goldman, I. Lee, and R. Trausmuth. Plug-and-play
for medical devices: Experiences from a case study. Biomedical Instrumentation
& Technology, 43(4):313–317, 2009.

[4] D. Arney, J. Plourde, R. Schrenker, P. Mattegunta, S. F. Whitehead, and J. M.
Goldman. Design pillars for medical cyber-physical system middleware. In
OASIcs-OpenAccess Series in Informatics, volume 36. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2014.

[5] G. Baldoni, M. Melita, S. Micalizzi, C. Rametta, G. Schembra, and A. Vassallo.
A dynamic, plug-and-play and efficient video surveillance platform for smart
cities. In 2017 14th IEEE Annual Consumer Communications Networking Conference
(CCNC), pages 611–612, Jan 2017.

[6] S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan, and M. Winslett.
Vetting browser extensions for security vulnerabilities with vex. Commun. ACM,
54(9):91–99, Sept. 2011.

[7] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting browsers from
extension vulnerabilities. In Network and Distributed System Security Symposium
(NDSS), 2010.

[8] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley Professional, 3rd edition, 2012.

[9] D. Birsan. On plug-ins and extensible architectures. Queue, 3(2):40–46, 2005.
[10] N. Carlini, A. P. Felt, and D. Wagner. An evaluation of the google chrome

extension security architecture. In Proceedings of the 21st USENIX Conference on
Security Symposium, Security’12, pages 7–7, Berkeley, CA, USA, 2012. USENIX
Association.

[11] J. C. C. M. da Fonseca and M. P. A. Vieira. A practical experience on the impact
of plugins in web security. In IEEE 33rd International Symposium on Reliable
Distributed Systems, pages 21–30. IEEE, 2014.

[12] S. Das and M. Zulkernine. Cloubex: A cloud-based security analysis framework
for browser extensions. In 2016 IEEE 17th International Symposium on High
Assurance Systems Engineering (HASE), pages 268–275. IEEE, 2016.

[13] M. Dhawan and V. Ganapathy. Analyzing information flow in javascript-based
browser extensions. In 2009 Annual Computer Security Applications Conference,
pages 382–391, Dec 2009.

[14] J. Dietrich, J. Hosking, and J. Giles. A formal contract language for plugin-
based software engineering. In 12th IEEE International Conference on Engineering
Complex Computer Systems (ICECCS 2007), pages 175–184, July 2007.

[15] M. Egele, E. Kirda, and C. Kruegel. Mitigating drive-by download attacks: Chal-
lenges and open problems. In J. Camenisch and D. Kesdogan, editors, iNetSec 2009
– Open Research Problems in Network Security, pages 52–62, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[16] I. Foster, A. Prudhomme, K. Koscher, and S. Savage. Fast and vulnerable: A
story of telematic failures. In Proceedings of the 9th USENIX Conference on
Offensive Technologies, WOOT’15, pages 15–15, Berkeley, CA, USA, 2015. USENIX
Association.

[17] J. Frtunikj, V. Rupanov, A. Camek, C. Buckl, and A. Knoll. A safety aware run-time
environment for adaptive automotive control systems. In Embedded real-time
software and systems (ERTS2), 2014.

[18] D. Gangadharan, J. H. Kim, O. Sokolsky, B. Kim, C.-W. Lin, S. Shiraishi, and I. Lee.
Platform-based plug and play of automotive safety features: Challenges and
directions. In 2016 IEEE 22nd International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 76–84. IEEE, 2016.

[19] B. G. Glaser. Theoretical sensitivity: Advances in the methodology of grounded
theory. Sociology Pr, 1978.

[20] B. G. Glaser. Basics of grounded theory analysis: Emergence vs forcing. Sociology
press, 1992.

[21] B. G. Glaser and A. L. Strauss. The discovery of grounded theory: Strategies for
qualitative research. New York: Aldlne, 1967.

[22] D. Gonzalez, F. Alhenaki, and M. Mirakhorli. Architectural security weaknesses
in industrial control systems (ICS) an empirical study based on disclosed software
vulnerabilities. In 2019 IEEE International Conference on Software Architecture
(ICSA), pages 31–40. IEEE, 2019.

[23] M. Greiler, A. v. Deursen, and M.-A. Storey. Test confessions: a study of testing
practices for plug-in systems. In Proceedings of the 34th International Conference
on Software Engineering, pages 244–254. IEEE Press, 2012.

[24] C. Grier, S. Tang, and S. T. King. Secure web browsing with the op web browser.
In SP 2008. IEEE Symposium on Security and Privacy, pages 402–416. IEEE, 2008.

[25] J. Himmelspach and A. M. Uhrmacher. Plug’n simulate. In Simulation Symposium,
2007. ANSS ’07. 40th Annual, pages 137–143, March 2007.

[26] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab, and
K. Thomas. Trends and lessons from three years fighting malicious extensions.
In USENIX Security Symposium, pages 579–593, 2015.

[27] R. Karim, M. Dhawan, V. Ganapathy, and C.-c. Shan. An analysis of the mozilla
jetpack extension framework. In European Conference on Object-Oriented Pro-
gramming, pages 333–355. Springer, 2012.

[28] T. Kwon and Z. Su. Detecting and analyzing insecure component usage. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, FSE ’12, pages 5:1–5:11, New York, NY, USA, 2012. ACM.

[29] P. W. l. Fong and S. A. Orr. A module system for isolating untrusted software
extensions. In 2006 22nd Annual Computer Security Applications Conference
(ACSAC’06), pages 203–212, Dec 2006.

[30] G. McGraw. Software security: building security in, volume 1. Addison-Wesley
Professional, 2006.

[31] I. Medeiros, N. Neves, and M. Correia. Equipping wap with weapons to detect
vulnerabilities: Practical experience report. In 2016 46th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), pages 630–637.
IEEE, 2016.

[32] O. Mesa, R. Vieira, M. Viana, V. H. Durelli, E. Cirilo, M. Kalinowski, and C. Lucena.
Understanding vulnerabilities in plugin-based web systems: an exploratory study
of wordpress. In Proceeedings of the 22nd International Conference on Systems and
Software Product Line, pages 149–159. ACM, 2018.

[33] B. Mewara, S. Bairwa, and J. Gajrani. Browser’s defenses against reflected cross-
site scripting attacks. In 2014 International Conference on Signal Propagation and
Computer Technology (ICSPCT), pages 662–667. IEEE, 2014.

[34] J. W. Min, S. M. Jung, and T. M. Chung. Filtering malicious routines in web
browsers using dynamic binary instrumentation. In 2012 14th International
Conference on Advanced Communication Technology (ICACT), pages 554–557.
IEEE, 2012.

[35] National Vulnerability Database. NVD Data feeds. https://nvd.nist.gov/vuln/data-
feeds, 2017. (Accessed on 04/31/2016).

[36] F. B. M. Nor, K. A. Jalil, and J. l. Ab Manan. An enhanced remote authentica-
tion scheme to mitigate man-in-the-browser attacks. In Proceedings Title: 2012
International Conference on Cyber Security, Cyber Warfare and Digital Forensic
(CyberSec), pages 271–276, June 2012.

[37] P. J. C. Nunes, J. Fonseca, and M. Vieira. phpsafe: A security analysis tool for oop
web application plugins. In 2015 45th Annual IEEE/IFIP International Conference
onDependable Systems and Networks (DSN), pages 299–306. IEEE, 2015.

[38] D. Oliveira, J. Navarro, N. Wetzel, and M. Bucci. Ianus: Secure and holistic
coexistence with kernel extensions - a immune system-inspired approach. In
Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC ’14,
pages 1672–1679, New York, NY, USA, 2014. ACM.

[39] D. Oliveira, N. Wetzel, M. Bucci, J. Navarro, D. Sullivan, and Y. Jin. Hardware-
software collaboration for secure coexistence with kernel extensions. SIGAPP
Appl. Comput. Rev., 14(3):22–35, Sept. 2014.

[40] J. Pan and X. Mao. Detecting dom-sourced cross-site scripting in browser ex-
tensions. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 24–34. IEEE, 2017.

[41] R. Rajkumar, A. Wang, J. D. Hiser, A. Nguyen-Tuong, J. W. Davidson, and J. C.
Knight. Component-oriented monitoring of binaries for security. In 2011 44th
Hawaii International Conference onSystem Sciences (HICSS), pages 1–10. IEEE,
2011.

[42] K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient detection and prevention of
drive-by-download attacks. In Proceedings of the 26th Annual Computer Security
Applications Conference, pages 31–39. ACM, 2010.

[43] P. Runeson and M. Hoest. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14:131–164,
2009.

[44] A. Saini, M. S. Gaur, and V. Laxmi. The darker side of firefox extension. In
Proceedings of the 6th International Conference on Security of Information and
Networks, pages 316–320. ACM, 2013.

[45] A. Saini, M. S. Gaur, V. Laxmi, and P. Nanda. sandfox: Secure sandboxed and
isolated environment for firefox browser. In Proceedings of the 8th International
Conference on Security of Information and Networks, SIN ’15, pages 20–27, New
York, NY, USA, 2015. ACM.

[46] J. C. S. Santos, A. Peruma, M. Mirakhorli, M. Galster, J. V. Vidal, and A. Sejfia.
Understanding software vulnerabilities related to architectural security tactics:
An empirical investigation of chromium, php and thunderbird. In 2017 IEEE
International Conference on Software Architecture (ICSA), pages 69–78. IEEE, 2017.

[47] J. C. S. Santos, K. Tarrit, and M. Mirakhorli. A catalog of security architec-
ture weaknesses. In 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), pages 220–223, April 2017.

[48] J. C. S. Santos, K. Tarrit, A. Sejfia, M. Mirakhorli, and M. Galster. An empirical
study of tactical vulnerabilities. Journal of Systems and Software, 149:263 – 284,
2019.

[49] H. Shahriar, K. Weldemariam, T. Lutellier, and M. Zulkernine. A model-based
detection of vulnerable and malicious browser extensions. In 2013 IEEE 7th
International Conference on Software Security and Reliability, pages 198–207, June
2013.

[50] B. Shand and J. Rashbass. Security for middleware extensions: Event meta-data
for enforcing security policy. In Proceedings of the 2008 Workshop on Middleware

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Joanna C. S. Santos, Adriana Sejfia, Taylor Corrello, Smruthi Gadenkanahalli, and Mehdi Mirakhorli

Security, MidSec ’08, pages 31–33, New York, NY, USA, 2008. ACM.
[51] L. Sousa, A. Oliveira, W. Oizumi, S. Barbosa, A. Garcia, J. Lee, M. Kalinowski,

R. de Mello, B. Fonseca, R. Oliveira, et al. Identifying design problems in the
source code: a grounded theory. In 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE), pages 921–931. IEEE, 2018.

[52] K. J. Stol, P. Ralph, and B. Fitzgerald. Grounded theory in software engineering
research: A critical review and guidelines. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 120–131, May 2016.

[53] M. Sun, D. Gu, J. Li, and B. Li. Pyxhon: Dynamic detection of security vulner-
abilities in python extensions. In 2012 International Conference on Information
Science and Technology (ICIST), pages 461–466. IEEE, 2012.

[54] H. Trunde and E. Weippl. Wordpress security: an analysis based on publicly avail-
able exploits. In Proceedings of the 17th International Conference on Information
Integration and Web-based Applications & Services, page 81. ACM, 2015.

[55] G. Varshney, M. Misra, and P. Atrey. Browshing a new way of phishing using
a malicious browser extension. In 2017 Innovations in Power and Advanced
Computing Technologies (i-PACT), pages 1–5, April 2017.

[56] J. Walden, M. Doyle, R. Lenhof, J. Murray, and A. Plunkett. Impact of plugins on
the security of web applications. In Proceedings of the 6th International Workshop

on Security Measurements and Metrics, page 1. ACM, 2010.
[57] S. Wang, G. S. Avrunin, and L. A. Clarke. Architectural building blocks for plug-

and-play system design. In I. Gorton, G. T. Heineman, I. Crnković, H. W. Schmidt,
J. A. Stafford, C. Szyperski, and K. Wallnau, editors, Component-Based Software
Engineering, pages 98–113, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[58] S. Wang, G. S. Avrunin, and L. A. Clarke. Plug-and-Play Architectural Design and
Verification, pages 273–297. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[59] R. J. Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

[60] WordPress.org. Hardening wordpress. https://codex.wordpress.org/Hardening_
WordPress, 2018. (Accessed on 03/01/2018).

[61] H. Zhang, M. A. Babar, and P. Tell. Identifying relevant studies in software
engineering. Information and Software Technology, 53(6):625–637, 2011.

[62] R. Zhao, C. Yue, and Q. Yi. Automatic detection of information leakage vulnerabil-
ities in browser extensions. In Proceedings of the 24th International Conference on
World Wide Web, pages 1384–1394. International World Wide Web Conferences
Steering Committee, 2015.

https://codex.wordpress.org/Hardening_WordPress
https://codex.wordpress.org/Hardening_WordPress

	Abstract
	1 Introduction
	2 Methodology
	2.1 Limiting the Phenomena Under Study
	2.2 Data Collection: Theoretical Sampling
	2.3 Open Coding
	2.4 Constant Comparison Method
	2.5 Memoing
	2.6 Selective Coding
	2.7 Memo Sorting
	2.8 Theoretical Coding

	3 A Taxonomy of Vulnerabilities in Plug-and-Play Systems
	3.1 Context: Plug-in Install
	3.2 Context: Plug-in Updates
	3.3 Context: Plug-and-Play Execution Environment
	3.4 Context: Plug-ins Request Handling

	4 Are the findings Supported by the Literature?
	4.1 Methodology
	4.2 Results

	5 Practitioners perspective on findings
	5.1 Results

	6 Threats to Validity
	7 Conclusion
	References

