SALsA: Static Analysis of Serialization Features

Joanna C. S. Santos
jds5109@rit.edu
Rochester Institute of Technology
Rochester, New York, USA

Abstract

Static analysis has the advantage of reasoning over multi-
ple possible paths. Thus, it has been widely used for verifi-
cation of program properties. Property verification often
requires inter-procedural analysis, in which control and
data flow are tracked across methods. At the core of inter-
procedural analyses is the call graph, which establishes re-
lationships between caller and callee methods. However, it
is challenging to perform static analysis and compute the
call graph of programs with dynamic features. Dynamic fea-
tures are widely used in software systems; not supporting
them makes it difficult to reason over properties related to
these features. Although state-of-the-art research had ex-
plored certain types of dynamic features, such as reflection
and RMI-based programs, serialization-related features are
still not very well supported, as demonstrated in a recent
empirical study. Therefore, in this paper, we introduce SALsA
(StaTIC ANALYZER FOR SERIALIZATION FEATURES), which
aims to enhance existing points-to analysis with respect to
serialization-related features. The goal is to enhance the re-
sulting call graph’s soundness, while not greatly affecting
its precision. In this paper, we report our early effort in de-
veloping SaLsa and its early evaluation using the Java Call
Graph Test Suite (JCG).

CCS Concepts: » Software and its engineering — Com-
pilers; Automated static analysis; » Theory of computa-
tion — Program analysis.

Keywords: Java serialization, Java deserialization, Object
marshaling and unmarshalling, Static analysis, Call graphs

ACM Reference Format:

Joanna C. S. Santos, Reese A. Jones, and Mehdi Mirakhorli. 2020.
SALsA: Static Analysis of Serialization Features. In Proceedings of
the 22th ACM SIGPLAN International Workshop on Formal Tech-
niques for Java-Like Programs (FTfJP ’20), July 23, 2020, Virtual,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

FIfJP 20, July 23, 2020, Virtual, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8186-4/20/07...$15.00
https://doi.org/10.1145/3427761.3428343

Reese A. Jones
raj8065@rit.edu
Rochester Institute of Technology
Rochester, New York, USA

18

Mehdi Mirakhorli
mxmvse@rit.edu
Rochester Institute of Technology
Rochester, New York, USA

USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3427761.3428343

1 Introduction

Static analysis has been widely used for performing mul-
tiple types of program properties verification, such as vul-
nerability/bug detection, test case generation, and compiler
optimizations [5, 7, 12, 15, 23, 36]. At the core of many of
those analyses is the program’s call graph, which establishes
the relationships between callers and callees [16]. These call
graphs are meant to model the possible program paths and it
is a crucial element when performing inter-procedural anal-
yses. However, many programming languages (including
Java) contain dynamic features that introduce challenges for
static program analysis.

Dynamic features are heavily used in contemporary soft-
ware systems [21, 29] to link/load new class libraries, meth-
ods, and objects and extend the programs’ functionalities.
Therefore, ignoring such constructs leads to unsound call-
graphs; they miss feasible runtime paths because they can-
not infer the possible execution from the code [29, 30, 37].
To tackle this problem, previous literature explored certain
classes of dynamic features, such as reflection features [6,
24, 25, 34], and programs with Remote Method Invocation
(RMI) [33]. However, as demonstrated by Reif et al. [29, 30],
one programming construct that has been left out from the
programming analysis techniques is the support for handling
serialization (and deserialization) of objects.

Object serialization (or marshalling) is the process of con-
verting an object to an abstract representation, such as bytes,
XML, JSON, etc. These representations are suitable for net-
work transportation, storage, and inter-process communi-
cation. In Java, the serialization mechanism converts the
objects’ fields to a stream of bytes (i.e., it does not serial-
ize code, only data). The receiver of a serialized object has
to parse the abstract representation in order to reconstruct
a new object. This reconstruction process is called object
deserialization (or unmarshalling) [27].

Serialization-related features are used in many software
systems [29]. It is one of the building blocks of Java RMI,
Java Management Extensions (JMX), and other technolo-
gies. Therefore, adding support to this construct can help
client analyses in reasoning over such programs. In partic-
ular, it enables finding reachable parts of the program via
callback methods that are invoked during serialization and
deserialization of objects [8].

https://doi.org/10.1145/3427761.3428343
https://doi.org/10.1145/3427761.3428343
https://doi.org/10.1145/3427761.3428343

FTfJP 20, July 23, 2020, Virtual, USA

In this paper, we present our early results in developing
SALSA (STATIC ANALYZER FOR SERIALIZATION FEATURES),
an approach to statically analyze Java programs that
contain serialization and deserialization in its code. It
is meant to complement existing call graph construction algo-
rithms to improve their soundness with respect to serialization-
related features. SALsA employs an iterative framework that
constructs call graphs on-the-fly and iteratively refines them
based on a set of assumptions about the code. When con-
structing the call graph, SArsa introduces synthethic meth-
ods, which are meant to model the behavior of the program
during serialization/deserialization; indicating the possible
callbacks that might be invoked during these processes. The
contributions of this work are:

e an approach to improve call graphs’ soundness with
respect to serialization/deserialization features. It is
agnostic to the underlying pointer analysis policy used
to construct a call graph and is meant to complement
them.

e a prototype implementation of the approach on top of
WALA.

e an initial evaluation of the approach’s soundness im-
provement using the Java Call Graph Test Suite [13].

2 Overview of the Java Serialization API

In Java, an object can be serializable into a stream of bytes
as long as its class implements the java.io.Serializable in-
terface. Only the object’s state (field values) are serialized;
its methods lie within the classpath of the receiver of the
byte stream [32]. All non-static and non-transient fields in a
class are serialized/deserialized by default. The ObjectOut-
putStream and ObjectInputStream classes from the java.io
package can be used for serializing and deserializing objects,
respectively. During serialization and deserialization, these
classes may invoke callback methods, which are a methods
with certain signatures that serializable classes can declare
to customize how their fields are serialized/deserialized [27].

Listing 1 has serializable classes examples!, in which two
of them have callback methods (lines 3-6, and 13-25). These
methods take as arguments the current object input/output
stream that can be used to read/write from/to the byte stream.
Since the field a from MyList is transient, it is not serialized
by default. Thus, its callback method writeObject() in MyList
ensures that the elements in a are serialized in order. MyList’s
readObject() method reconstructs the array by first reading
its size from the stream, allocating a with the right size, and
finally reading each element from the stream 2.

The code snippet shown in Listing 2 serializes a Classroom
object into a file. It first instantiates an ObjectOutputStream,
passing to its constructor a FileOutputStream instance. Then,

1We only show their fields and callback methods due to space constraints.
2This sample implementation is similar to the one in java.util. ArrayList

19

Joanna C. S. Santos, Reese A. Jones, and Mehdi Mirakhorli

1 class Student implements Serializable { protected String name; }
2 class TA extends Student{
3 private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException { /% ...
private void writeObject(ObjectOutputStream s)
throws IOException { /% ... %/ }

4 */ }
5
6
7
8 class Classroom implements Serializable {
9 private int totalSeats; private MyList<Student> students;
class MyList extends AbstractList<Student> implements Serializable{
private transient Student[] a; private int size;
private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException {
s.defaultReadObject();
a = (Student[]) new Object[sizel;
if (size > 0) {
for (int i = 0; i < size; i++) a[i] = (Student) s.readObject();
¥

private void writeObject(ObjectOutputStream s)
throws IOException {
s.defaultWriteObject();
for (int i = 0; i < size; i++) s.writeObject(alil);

}

Listing 1. Examples of Serializable classes

it calls writeObject() passing c1 as an argument, which seri-
alizes c1 as a byte stream and saves it in "class.txt".

1 Classroom c1 = new Classroom(30,

2 new MyList<>(new Student[J{new Student("John"), new TA("Jane")}));
3 FileOutputStream f = new FileOutputStream(new File("class.txt"));

4 ObjectOutputStream out = new ObjectOutputStream(f);

5 out.writeObject(cl);

Listing 2. Object serialization in Java

Listing 3 has a code snippet that deserializes this object
from the file. This code creates an ObjectInputStream in-
stance. Then, it invokes the method readObject(), which
parses the stream of bytes and returns an object. The re-
turned object is finally casted to the Classroom class type.

1 FileInputStream fs = new FileInputStream(new File("class.txt"));
2 ObjectInputStream in = new ObjectInputStream(fs);
3 Classroom c2 = (Classroom) in.readObject();

Listing 3. Object deserialization in Java

Figure 1 contains a sequence diagram with the major meth-
ods invoked during the execution of Listings 2 and 3. Classes
with a gray background are part of the Java’s API, whereas
the ones with a white background are application classes. As
shown in this diagram, the callback methods are (indirectly)
called by the ObjectStreamClass via reflection (marked in
red dashed arrows). During serialization and deserialization,
both writeObject and readObject from MyList are invoked.
Since one element in a is of type TA, the writeObject and
readObject methods from TA are also invoked via reflection.

3 Approach Overview

From the examples shown in Section 2, we observe two
major challenges that should be handled by a static ana-
lyzer in order to construct a sound call graph with respect
to serialization-related features: (i) the callback methods

SALsA: Static Analysis of Serialization Features

FTfJP °20, July 23, 2020, Virtual, USA

- out: g cl.students:
5[Apphcatmn][ObjectOutputStream] [ObjectStreamClass] [

1 writeObject(c1) |

'
___multiple internal calls !
i) 1 1

'

'

'

. 4-- . . .
invokeWriteObject(c | .smdems‘thlsr) ‘ writeObject(out)

Application fe
PP ObjectInputStream

. readObject() :

[:ObjectStreamClass] [:MyList]

multiple internal calls
)

j
invokeReadObject(obj,this) _ | readObject(in)_+
>

o

writeObject(a[1]) readObject()
invokeWriteObject(a[1 |, this) oL |writcObjectioun| | Classroom invokeReadObject(n»lzi.lhix)‘L'ﬂ readObject(in)_
object
Serialization ' ' Deserialization ' !
Figure 1. Method calls during serialization/deserialization of objects
 SEEEE—
Method >
a > ut.writeObject(o))
add more methods | Dispatch
- to be explored Serialization points Deserialization points
| Program add ¢ object. i "
[entrypoints context, object, invocation
to worklist A 4
Entrypoints Pointer — -~ |Output Stream Input Stream —
Extraction Analysis = Modeling Modeling
- .
] Initial call
g=a | Entrypoints T Work list graph Call graph
method's signatures of methods

Figure 2. Overview of the approach employed by SaLsa

that are invoked during the serialization/deserialization; and
(ii) the fields within the class can be allocated in unex-
pected ways.

When deserializing an object, which actual callback meth-
ods invoked at runtime depends on the byte stream whose
contents is unknown during static analysis. For instance, if
the code snippet in Listing 2 had only the student “John”
in the list (line 2), then the calls to readObject/writeObject
methods in TA would not be made.

Existing pointer analysis policies leverage on allocation
instructions (new T()) within the program to infer the pos-
sible runtime types for objects [4, 14, 17, 18, 20, 22, 31, 35].
However, as we demonstrated in the examples, the alloca-
tions of objects and their fields and invocations to callback
methods are made on-the-fly by Java’s serialization/deseri-
alization mechanism. During static analysis, we can only
pinpoint that there is an InputStream object that provides a
stream of bytes from a source (e.g., a file, socket, etc) to an
ObjectInputStream instance, but the contents of this stream
is uncertain. Hence, the serialized object and its state are
unknown (i.e., the allocations within its fields). As a result,
existing static analyses fail to support serialization-related
features.

To handle these challenges, we make these assumptions:

(1) There is no dynamic loading of remote classes.
Thus, only the classes in the classpath are available for
serialization (closed-world assumption) [26];

(2) All fields in serializable classes are not null. They
can be allocated with any type that is safe. This assump-
tion ensures that we can soundly infer the possible

20

targets for invocations within callback methods made
via inner fields (e.g., lines 18 and 24 in Listing 1).

(3) All type refinements (downcasts) are safe. Hence,
they can be used to infer the possible callback meth-
ods invoked during the serialization/deserialization
and points-to sets for fields within serializable classes.
This assumption is crucial to improve the call graph’s
soundness while not greatly degrading its precision
since many classes in the classpath implement the
java.io.Serializable interface.

To support serialization-related features we developed
Savrsa. It employs an iterative approach for building the pro-
gram’s call graph [16]. The approach involves two major
phases: (1) A set of iterations over a worklist of methods
to create an initial (unsound) call graph using an underly-
ing pointer analysis policy; (2) An iterative refinement of
the initial call graph by applying the assumptions aforemen-
tioned. In the next subsections, we first present definitions
for relevant concepts to make the work understood by a
broader audience. Next, we explain how SArLsa enhances
existing pointer analysis policies to support serialization-
related features by performing call graph refinement via
code modeling.

3.1 Definitions

Below we define concepts needed for understanding our
solution formulation subsequently described. We use similar
terminology as [37].

DEFINITION 1. Scope: Each instruction i enclosed in a method
m in a program under analysis has a scope. The scope is based

FTfJP 20, July 23, 2020, Virtual, USA

on where m is declared and it can either be application, exten-
sion (code from libraries/APIs), or primordial (Java’s standard
API classes).

DEFINITION 2. Serialization Points: Instructions i within
the application scope that invokes ObjectOutputStream’s
writeObject(Object) are serialization points; they convert an
object into a stream of bytes.

DEerFINITION 3. Deserialization Points: Instructions i within
the application scope that invokes ObjectInputStream’s read-
Object() are deserialization points; they reconstruct an object
from a byte stream.

DEFINITION 4. Method Contexts: Each method m in the
program has an associated context ¢, where contexts(m)
track all the contexts that have arisen for m. A context ¢ is
an abstraction of the program’s state.

DEFINITION 5. Pointer: A variable x in a method m at a
context ¢ has an associated abstract pointer p = (x, c).
DEFINITION 6. Points-to sets: A points-to set pt(p) tracks
the variables or heap locations to which the pointer p can
point to. Every variable x in a context ¢ has an associated
points-to set pt({x, c)).

DErinITION 7. Worklist of Methods: SALsA maintains a
worklist ‘W which tracks the methods m under a context ¢
that have to be traversed ({m, c¢) € W).

DEerINITION 8. Synthetic Methods: SAaLsa employs synthetic
methods ms € M to model the possible method calls dur-
ing serialization/deserialization. Thus, the program’s call
graph includes “fake” nodes computed from these synthetic
methods mg under a context c.

3.2 Phase 1: Initial Call Graph Construction

The first step in our approach is to extract the program’s
entrypoints, which are the methods that start the program’s
execution. We use the main() methods as entrypoints by de-
fault. However, client analyses can provide a CSV file with
method signatures for entrypoints (useful for Web applica-
tions/services written in Java which can process requests
from many entrypoint methods). The result of this step is a
list of entrypoint methods m added to our worklist ‘W. Since
the worklist tracks methods within a context, the entrypoints
methods are assigned a global context [37].

Starting from the entrypoint methods identified, SALsa
constructs an initial (unsound) callgraph using the un-
derlying algorithm selected by the client analysis (e.g., n-CFA,
etc). Each method in the worklist (m, ¢) € W is converted
into an Intermediary Representation (IR) in Single Static
Assignment form (SSA) [9]. Each instruction in this IR is vis-
ited following the rules by the underlying pointer analysis
algorithm. We point the reader to the work by Sridharan et
al. [37] which provides a generic formulation for multiple
points-to analysis policies.

When visiting instance invocation instructions (i.e., x =
0.g(ai,as,...,an)) in a method m, the static analysis computes

21

Joanna C. S. Santos, Reese A. Jones, and Mehdi Mirakhorli

the possible dispatches (call targets) for the method g as
follows:

targets = dispatch(pt({o,c)),g)

The dispatch mechanism takes into account the current
points-to set for the object o at the current context c. If
the invocation instruction occurs at a serialization or deseri-
alization point, then the dispatch function implemented by
SALSA creates a synthetic method to model the runtime behav-
ior for the readObject() and writeObject() from the classes
ObjectInputStream and ObjectOutputStream, respectively.
These synthetic models are created at this phase without in-
structions. Their instructions are constructed during the call
graph refinement phase (Phase 2). It is important to highlight
that the calls to synthetic methods (models) are 1-callsite-
sensitive [37]. We use this context-sensitiveness policy to
account for the fact that one can use the same ObjectInput-
Stream/ObjectOutputStream instance to read/write multiple
objects.

As aresult of this first iteration over Phase 1, we obtain the
initial callgraph and a list of the call sites at the serialization
and deserialization points.

3.3 Phase 2: Call Graph Refinement

In this phase, we take as input the current call graph g which
contains as nodes actual methods in the application and
synthetic methods created by SALsa in the previous phase. At
this phase, SALsA adds instructions to these synthetic models
by applying the assumptions mentioned at the beginning of
this section, described in detail as follows.

3.3.1 Modeling Object Serialization. Algorithm 1 indi-
cates the procedure for modeling object serialization. For
each instruction at the serialization points, we obtain the
points-to set for the object o; passed as the first argument to
writeObject(Object). The points-to set pt({o;, ¢)) indicates
the set of allocated types t for o; under context c. Since
the writeObject’s argument is of type Object, we first add
to ms a type cast instruction that refines the first parame-
ter to the type t. In case the class type ¢ implements the
writeObject(ObjectInputStream) callback, we add an invoca-
tion instruction from m; targeting this callback method.

Subsequently (the foreach in line 10), we iterate over
all non-static fields f from the class t and compute their
points-to sets. If the concrete types allocated to the field
contains callback methods, we add three instructions: (i) an
instruction to get the instance field f from the object; (ii) a
downcast to the field’s type; (iii) an invocation to the callback
method from the field’s declaring class.

After adding all the needed instructions to the synthetic
method ms, we re-add the synthetic method to SALsa’s work-
list (as depicted in Figure 2).

3.3.2 Modeling Object Deserialization. Since multiple
classes in a classpath (e.g., Java’s Swing classes) implement

SALsA: Static Analysis of Serialization Features

FTfJP °20, July 23, 2020, Virtual, USA

Algorithm 1: Object serialization modeling

Algorithm 2: Object deserialization modeling

Input: Set of invocation instructions to writeObject: I;
Project’s initial call graph: G;

Output: Set of refined synthetic models M;

1 foreach instruction inI do

2 0; « argument(l,instruction)

3 ¢ « context(instruction)

4 mg « target(instruction)

5 foreach t € pt((o;,c)) do

6

7

8

9

addTypeCast(rmy,t)
if ¢ has a writeObject(ObjectOutputStream) callback then
addInvoke(ms, t.writeObject)
end
10 foreach f € fields(t) do
1 foreach fieldType € pt({o;.f,c)) do
12 if fieldT ype has writeObject(ObjectOutputStream)
then
13 addGetField(mys, f)
14 addTypeCast(ms, fieldT ype)
15 addInvoke(ms, fieldT ype.writeObject)
16 end
17 end
18 end
19 end
20 addToWorkList(ms,c)
21 end

the java.io.Serializable interface, objects received from a
source stream can be of any of these classes. Thus, there
is a high amount of possible calls that would be erroneously
included in the resulting call graph. To tame this complexity,
we assume that only the classes in the classpath are serialized,
all their instance fields are non-null, and downcasts are safe
when modeling the serialization mechanism. Algorithm 2
contains the steps performed in this modeling.

We first traverse the def-use chains [1] of the caller’s IR
to find any downcasts for the returned deserialized object:

0Oret = in.readObject()

x = (ClassType) 0ye;

For each downcast type, we add an allocation instruction
into m; followed by an invocation to the type’s readObject()
callback method (if any exists). Subsequently, we iterate over
all instance fields of the type and compute the possible serial-
izable classes that are type-safe for the field. For each possible
type safe, we add a field allocation. Then, if the possible type
has a callback method, we add two more instructions into
ms: a cast to the possible type and an invocation to the call-
back. After adding the aforementioned instructions to my,
the synthetic method is re-added to the worklist.

3.4 Running Example

Figure 3 partially shows the call graph SALsA computes for
the Listing 2. To build this call graph, SALsA computes the ini-
tial call graph (using 0-1-CFA in this example). The initial call
graph contains one synthetic method modeling ObjectOut-
putStream’s writeObject(...) called at main. The synthetic
method is initialized without any instructions (Phase 1). In

22

Input: Set of invocation instructions to ObjectInputStream.readObject: I;
Project’s initial call graph: G;
Serializable classes in the classpath: S;

Output: Set of refined synthetic models M /* re-added to the

worklist

foreach instruction in I do

¢ « context(instruction)

ms < target(instruction)

*/

1

2

3

4 0rer < argument(l,instruction)
5 foreach t € downcasts(0yer) do
6

7

8

9

0; < addAllocation(mg,t)
if ¢ has a readObject(ObjectinputStream) callback then
| addInvoke(ms,t.readObject)
end
10 foreach f € fields(t) do
11 foreach type € possibletypes(f) do
12 addAllocation(ms,0;. f, type)
13 if type has readObject(ObjectinputStream) then
14 addGetField(mg,0;.f)
15 addTypeCast(ms,0;.f type)
16 addInvoke(ms,t ype.readObject)
17 end
18 end
19 end
20 end
21 addToWorkList(mg,c)
22 end

main(String[])

void writeObject(ObjectInputStream v2)
Context: [main(): callsite @ line 5]

ObjectOutputStream.writeObject(...)

=(C hssroom) v2;
\ 5 vd.students:
v6 = (MyList) \)
v(».\\'mc()h]ccl(v]):

MyList.writeObject(...)
\md writeObject(ObjectInputStream v2)
Context: [MyList.writeObject(): callsite @ line 74]
' V4= (TA) v2;

va.writeObject(vl); L ObjectOutputStream writeObject(..

V6= (Student) v2;
} | [:
Legend: ' Synthetic nodes TA Wmeobject

Figure 3. Computed call graph for Listing 2

Phase 2, SALsA refines the initial call graph by adding instruc-
tions to this first synthetic method. The added instructions
include a possible call to MyList’s writeObject. After en-
riching the synthetic method with instructions, SaLsa adds
the synthetic method back again to the worklist for fur-
ther analysis by the pointer analysis component and dispatch
mechanism. After visiting all instructions from the synthetic
node, there is a new serialization point at it (as highlighted
in yellow). Thus, the dispatch mechanism adds a new node
to the call graph corresponding to a second synthetic model
which arises at line 24 in Listing 1. This second synthetic
method is added to the call graph with no instructions. This
synthetic method is then refined by adding instructions to it
which indicates a possible invocation to the callback method
from the TA class. At this stage, no more refinements are
needed (since no more serialization points are uncovered at
the synthetic method introduced).

FTfJP 20, July 23, 2020, Virtual, USA

Table 1. Results from running the test cases from JCG

Serl
v v v v v X X X X

Ser2 Ser3 Ser4 Ser5 Ser6 Ser7 Ser8 Ser9

4 Early Results

We developed a prototype for SALsA in Java using IBM’s T. J.
Watson Libraries for Analysis (WALA) [19]. In this section,
we discuss initial results for the research question:

RQ Does the approach improve in terms of soundness with
respect to serialization features?

To answer this question, we run SALsA with the Java Call
Graph Test Suite (JCG) [13, 29, 30]. This test suite contains
nine test cases (Ser1-9) with serialization or deserializa-
tion in it. Each test case is a Java program with annotations
that indicate the expected targets for a method call. Table 1
reports the test cases that SALsA passed (v') and the ones
it failed (X). The computed call graphs are released at our
repository https://github.com/SoftwareDesignLab/Salsa.

SALsa passed 5 out of 9 test cases. The test cases Ser6-9
failed because they involved callback methods that SaLsa’s
prototype currently does not support (i.e., readResolve, val-
idateObject, and writeReplace). Adding support to these
callbacks is part of our ongoing efforts in improving.

Although Sarsa did not pass all test cases in the JCG test
suite, it is important to highlight that existing call graph con-
struction algorithms only passed either 1 test case (Sootgra
and Sootcya) or 5 test cases (OPALgra) [29]. Even then,
they use imprecise call graph construction algorithms, Class
Hierarchy Analysis (CHA) [10] and Rapid Type Analysis
(RTA) [3] which creates large and imprecise call graphs (in
terms of nodes and edges) because they only rely on static
types when computing the possible targets of a method invo-
cation. SALsa keeps a balance between improving soundness
while not greatly affecting the call graph’s precision.

5 Future Work

We intend to improve SALSA concerning the following:
eHandle cases in which classes explicitly declare which
fields should be serialized: In Java, a developer can define
the fields to be serialized in two ways: implicitly (all the non-
transient and non-static fields are serialized by default); or
explicitly by declaring an extra field (serialPersistentFields),
that indicates names and types of the serializable fields. SALsa
currently assumes that the classes declare the serializable
fields implicitly.

e Provide support for serialization via the Externaliz-
able interface: Unlike the Serializable interface which use
Java’s serialization protocol [27], the Externalizable inter-
face has its own callback methods and the application classes
have to implement the serialization process themselves.
eModel other callback methods(e.g., validateObject()) [27].

23

Joanna C. S. Santos, Reese A. Jones, and Mehdi Mirakhorli

Moreover, we will evaluate SALSA using real software sys-
tems. We will verify whether SALsa is scalable to realistic
programs. We will also inspect to what extent the approach
affects the call graph’s precision (i.e., how many spurious

paths are added to the call graph).
6 Related Work

Many works explored the problem of performing pointer
analysis of programs [4, 14, 17, 18, 20, 22, 31, 35]. These ap-
proaches focus on computing over- or under-approximations
in order to improve one or more aspects of the analysis, such
as its soundness, precision, performance, and scalability. In
this paper, we focus on aiding points to analysis in han-
dling by serialization-related features in a program. Previous
research on static analysis also explored the challenges in-
volving supporting reflection features [6, 24, 25, 34]. These
approaches involve making certain assumptions when per-
forming the analysis, in order to create analyses that are not
overly imprecise. Sharp and Rountev discussed an approach
to statically analyze RMI-based programs, which requires
reasoning over client and server code and their inter-process
communication via objects/messages [33]. In the past few
years, there was a spike of vulnerabilities associated with
deserialization of objects [8]. Thus, existing works also stud-
ied vulnerabilities rooted at untrusted deserialization vul-
nerabilities [11, 28]. Pele et al. [28] conducted an empirical
investigation of deserialization of pointers that lead to vul-
nerabilities in Android applications and SDKs. Dietrich et
al [11] demonstrated how seemingly innocuous objects trig-
ger vulnerabilities when deserialized, leading to denial of
service attacks. There is a line of research that explored call
graph’s soundness of Java (or JVM-like) programs [2, 29, 30].
In particular, recent empirical studies [29, 30] show that al-
though serialization-related features are widely used, they
are not well supported in existing approaches. Currently, to
the best of our knowledge, we could not find an approach
that aims to enhance existing points-to analysis to support
serialization-related features.

7 Conclusion

We presented SALsA, an approach to support the static anal-
ysis of serialization-related features in Java programs. By
applying assumptions, SALsA adds synthetic nodes into a
previously computed call graph to improve its soundness
with respect to serialization-related features. We provided
initial results concerning to which extent SALSA can improve
call graphs’ soundness by running SALsA against test cases
from the Java Call Graph Test Suite (JCG).

Acknowledgments

This work was partially funded by the US National Science
Foundation under grant number CNS-1816845.

SALsA: Static Analysis of Serialization Features

References

(1]
(2]

—
-
fla

(7]

—
(o)
—

(10]

(11]

[12]

(13]

(14]

(15]

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers,
principles, techniques. Addison wesley 7, 8 (1986), 9.

Karim Ali, Xiaoni Lai, Zhaoyi Luo, Ondrej Lhotak, Julian Dolby, and
Frank Tip. 2019. A Study of Call Graph Construction for JVM-
Hosted Languages. IEEE Transactions on Software Engineering (2019).
https://doi.org/10.1109/TSE.2019.2956925

David F Bacon and Peter F Sweeney. 1996. Fast static analysis of
C++ virtual function calls. In Proceedings of the 11th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications. 324-341. https://doi.org/10.1145/236337.236371

Osbert Bastani, Rahul Sharma, Lazaro Clapp, Saswat Anand, and Alex
Aiken. 2019. Eventually Sound Points-To Analysis with Specifica-
tions. In 33rd European Conference on Object-Oriented Programming
(ECOOP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
https://doi.org/10.4230/LIPlcs.ECOOP.2019.11

M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman. 2016. Analyzing
the state of static analysis: A large-scale evaluation in open source soft-
ware. In 23rd International Conference on Software Analysis, Evolution,
and Reengineering. 470-481. https://doi.org/10.1109/SANER.2016.105
Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira
Mezini. 2011. Taming Reflection: Aiding Static Analysis in the Pres-
ence of Reflection and Custom Class Loaders. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE’11). ACM, New
York, NY, USA, 241-250. https://doi.org/10.1145/1985793.1985827
Jestis Mauricio Chimento, Wolfgang Ahrendt, and Gerardo Schneider.
2018. Testing Meets Static and Runtime Verification. In Proceedings of
the 6th Conference on Formal Methods in Software Engineering (Gothen-
burg, Sweden) (FormaliSE °18). Association for Computing Machinery,
New York, NY, USA, 30-39. https://doi.org/10.1145/3193992.3194000
Cristina Cifuentes, Andrew Gross, and Nathan Keynes. 2015. Un-
derstanding caller-sensitive method vulnerabilities: A class of access
control vulnerabilities in the java platform. In Proceedings of the 4th
ACM SIGPLAN International Workshop on State Of the Art in Program
Analysis. 7-12. https://doi.org/10.1145/2771284.2771286

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Trans. Program.
Lang. Syst. 13,4(1991),451-490. https://doi.org/10.1145/115372.115320
Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of
object-oriented programs using static class hierarchy analysis. In Eu-
ropean Conference on Object-Oriented Programming. Springer, 77-101.
https://doi.org/10.1007/3-540-49538-X_5

Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex
Potanin. 2017. Evil Pickles: DoS Attacks Based on Object-Graph Engi-
neering. In 31st European Conference on Object-Oriented Programming
(ECOOP 2017), Vol. 74. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany, 10:1-10:32. https://doi.org/10.4230/LIPIcs.
ECOOP.2017.10

V. D’Silva, D. Kroening, and G. Weissenbacher. 2008. A Survey of
Automated Techniques for Formal Software Verification. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
27,7 (2008), 1165-1178. https://doi.org/10.1109/TCAD.2008.923410
Michael Eichberg. 2020. JCG - SerializableClasses. https:
//bitbucket.org/delors/jcg/src/master/jcg_testcases/src/main/
resources/Serialization.md. (Accessed on 06/01/2020).

Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. 2015. Bottom-
Up Context-Sensitive Pointer Analysis for Java. In Programming Lan-
guages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South
Korea, November 30 - December 2, 2015, Proceedings (Lecture Notes in
Computer Science, Vol. 9458), Xinyu Feng and Sungwoo Park (Eds.).
Springer, 465-484. https://doi.org/10.1007/978-3-319-26529-2_25
Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The pro-
gram dependence graph and its use in optimization. ACM Transactions

24

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

FTfJP °20, July 23, 2020, Virtual, USA

on Programming Languages and Systems (TOPLAS) 9, 3 (1987), 319-349.
https://doi.org/10.1145/24039.24041

David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. 1997.
Call graph construction in object-oriented languages. In Proceedings
of the 12th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA’97). ACM, New York,
NY, USA, 108-124. https://doi.org/10.1145/263698.264352

Nevin Heintze and Olivier Tardieu. 2001. Demand-driven pointer
analysis. ACM SIGPLAN Notices 36, 5 (2001), 24-34. https://doi.org/
10.1145/381694.378802

Michael Hind. 2001. Pointer analysis: Haven’t we solved this prob-
lem yet?. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for software tools and engineering. 54-61.
https://doi.org/10.1145/379605.379665

IBM. [n.d.]. T.J. Watson Libraries for Analysis (WALA). http://wala.
sourceforge.net/wiki/index.php/Main_Page. (Accessed on 06/05/2020).
George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-
sensitivity for points-to analysis. ACM SIGPLAN Notices 48, 6 (2013),
423-434. https://doi.org/10.1145/2499370.2462191

Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017.
Challenges for Static Analysis of Java Reflection: Literature Review
and Empirical Study. In Proceedings of the 39th International Confer-
ence on Software Engineering (ICSE’17). IEEE Press, 507-518. https:
//doi.org/10.1109/ICSE.2017.53

Ondrej Lhotak and Laurie Hendren. 2006. Context-sensitive points-
to analysis: is it worth it?. In International Conference on Compiler
Construction. Springer, 47-64. https://doi.org/10.1007/11688839_5

Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017.
Static analysis of android apps: A systematic literature review. Infor-
mation and Software Technology 88 (2017), 67 — 95. https://doi.org/10.
1016/j.infsof.2017.04.001

Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-Inferencing
Reflection Resolution for Java. In Proceedings of the 28th European
Conference on ECOOP 2014 — Object-Oriented Programming - Volume
8586. Springer-Verlag, Berlin, Heidelberg, 27-53. https://doi.org/10.
1007/978-3-662-44202-9_2

Yue Li, Tian Tan, and Jingling Xue. 2019. Understanding and analyzing
Java reflection. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 28, 2 (2019), 1-50. https://doi.org/10.1145/3295739
Benjamin Livshits, John Whaley, and Monica S. Lam. 2005. Reflec-
tion Analysis for Java. In Proceedings of the Third Asian Conference
on Programming Languages and Systems (Tsukuba, Japan) (APLAS’05).
Springer-Verlag, Berlin, Heidelberg, 139-160. https://doi.org/10.1007/
11575467_11

Oracle. [n.d.]. Java Object Serialization Specification (version 6.0
). https://docs.oracle.com/javase/8/docs/platform/serialization/spec/
serialTOC.html. (Accessed on 05/24/2020).

Or Peles and Roee Hay. 2015. One Class to Rule Them All: 0-Day
Deserialization Vulnerabilities in Android. In 9th USENLX Workshop on
Offensive Technologies (WOOT 15). USENIX Association, Washington,
D.C.

Michael Reif, Florian Kiibler, Michael Eichberg, Dominik Helm, and
Mira Mezini. 2019. Judge: Identifying, Understanding, and Evaluating
Sources of Unsoundness in Call Graphs. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(Beijing, China) (ISSTA 2019). Association for Computing Machinery,
New York, NY, USA, 251-261. https://doi.org/10.1145/3293882.3330555
Michael Reif, Florian Kiibler, Michael Eichberg, and Mira Mezini. 2018.
Systematic Evaluation of the Unsoundness of Call Graph Construction
Algorithms for Java. In Companion Proceedings for the ISSTA/ECOOP
2018 Workshops (ISSTA’18). ACM, 107-112. https://doi.org/10.1145/
3236454.3236503

https://doi.org/10.1109/TSE.2019.2956925
https://doi.org/10.1145/236337.236371
https://doi.org/10.4230/LIPIcs.ECOOP.2019.11
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/3193992.3194000
https://doi.org/10.1145/2771284.2771286
https://doi.org/10.1145/115372.115320
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.4230/LIPIcs.ECOOP.2017.10
https://doi.org/10.4230/LIPIcs.ECOOP.2017.10
https://doi.org/10.1109/TCAD.2008.923410
https://bitbucket.org/delors/jcg/src/master/jcg_testcases/src/main/resources/Serialization.md
https://bitbucket.org/delors/jcg/src/master/jcg_testcases/src/main/resources/Serialization.md
https://bitbucket.org/delors/jcg/src/master/jcg_testcases/src/main/resources/Serialization.md
https://doi.org/10.1007/978-3-319-26529-2_25
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/263698.264352
https://doi.org/10.1145/381694.378802
https://doi.org/10.1145/381694.378802
https://doi.org/10.1145/379605.379665
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://doi.org/10.1145/2499370.2462191
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1007/11688839_5
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1145/3295739
https://doi.org/10.1007/11575467_11
https://doi.org/10.1007/11575467_11
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/3236454.3236503
https://doi.org/10.1145/3236454.3236503

FTfJP 20, July 23, 2020, Virtual, USA

[31]

[32]

[33]

[34]

Atanas Rountev, Ana Milanova, and Barbara G Ryder. 2001. Points-to
analysis for Java using annotated constraints. ACM SIGPLAN Notices
36, 11 (2001), 43-55. https://doi.org/10.1145/504311.504286
Christian Schneider and Alvaro Mufioz. 2016. Java Deserialization
Attacks. https://owasp.org/www-pdf-archive/GOD16-Deserialization.
pdf. (Accessed on 11/15/2019).

M. Sharp and A. Rountev. 2006. Static Analysis of Object References in
RMI-Based Java Software. IEEE Transactions on Software Engineering
32, 9 (2006), 664-681. https://doi.org/10.1109/TSE.2006.93

Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Mar-
tin Bravenboer. 2015. More Sound Static Handling of Java Reflec-
tion. In Programming Languages and Systems, Xinyu Feng and Sung-
woo Park (Eds.). Springer International Publishing, Cham, 485-503.
https://doi.org/10.1007/978-3-319-26529-2_26

25

[35]

[36]

[37]

Joanna C. S. Santos, Reese A. Jones, and Mehdi Mirakhorli

Yannis Smaragdakis and George Kastrinis. 2018. Defensive Points-To
Analysis: Effective Soundness via Laziness. In 32nd European Confer-
ence on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/LIPIcs.
ECOOP.2018.23

Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer
Tripp, and Ryan Berg. 2011. F4F: taint analysis of framework-based web
applications. In Proceedings of the 2011 ACM international conference
on Object oriented programming systems languages and applications.
1053-1068. https://doi.org/10.1145/2048066.2048145

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen] Fink, and
Eran Yahav. 2013. Alias analysis for object-oriented programs. In Alias-
ing in Object-Oriented Programming. Types, Analysis and Verification.
Springer, 196-232. https://doi.org/10.1007/978-3-642-36946-9_8

https://doi.org/10.1145/504311.504286
https://owasp.org/www-pdf-archive/GOD16-Deserialization.pdf
https://owasp.org/www-pdf-archive/GOD16-Deserialization.pdf
https://doi.org/10.1109/TSE.2006.93
https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://doi.org/10.1145/2048066.2048145
https://doi.org/10.1007/978-3-642-36946-9_8

	Abstract
	1 Introduction
	2 Overview of the Java Serialization API
	3 Approach Overview
	3.1 Definitions
	3.2 Phase 1: Initial Call Graph Construction
	3.3 Phase 2: Call Graph Refinement
	3.4 Running Example

	4 Early Results
	5 Future Work
	6 Related Work
	7 Conclusion
	References

