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Abstract—Software designers and developers are increasingly
relying on application frameworks as first-class design concepts.
They instantiate the services that frameworks provide to im-
plement various architectural tactics and patterns. One of the
challenges in employing frameworks for such tasks is the diffi-
culty of learning and correctly using the APIs of the frameworks.
This paper introduces a learning-based approach called ARCODE
to help novice programmers correctly use frameworks’ APIs
to implement architectural tactics and patterns. ARCODE has
several novel components: a graph-based approach for learning
specification of a framework from a limited number of training
software, a program analysis algorithm to eliminate erroneous
training data, and a recommender module to help programmers
use APIs correctly and identify API misuses in their program. We
evaluated our technique across two popular frameworks: JAAS
security framework used for authentication and authorization
tactic and Java RMI framework used to enable remote method
invocation between client and server and other object oriented
patterns. Our results demonstrate (i) the feasibility of using
ARCODE to learn the specification of a framework; (ii) ARCODE
generates accurate recommendations for finding the next API
call to implement an architectural tactic/pattern based on the
context of the programmer’s code; (iii) it accurately detects
API misuses in the code that implements a tactic/pattern and
provides fix recommendations. We also demonstrate that ArCode
outperforms two famous techniques, MAPO and GrouMiner, on
API recommendation and misuse detection tasks.

Index Terms—Software Framework, Architectural Tactics, API
Specification, API Usage Model, API Recommendation, API
Misuse Detection

I. INTRODUCTION

To satisfy performance, security, reliability and other quality
concerns, architects need to compare and carefully choose
a combination of architectural patterns, styles or tactics. In
the subsequent development phase, these architectural choices
must be implemented completely and correctly in order to
avoid a drift from envisioned design. Cervantes et al. [1]
confirms that software designers and developers are increas-
ingly relying on application frameworks as first-class design
concepts to facilitate implementation of architectural tactics
and patterns. Software frameworks are reusable software ele-
ments that provide key functionalities, addressing recurring
concerns across a range of applications. They incorporate
many architectural patterns and tactics to prevent software
designers and developers from implementing software from
scratch [1], [2]. For instance, the architecture of most contem-
porary enterprise applications relies on the Spring Framework

that provides pre-packaged solutions to implement various
architectural concepts ranging from Model-View-Controller
(MVC) patterns to authentication and authorization security
tactics [3], [4].

Developers use Application Programming Interfaces (APIs)
to import and use the frameworks’ functionalities [2], [5].
Therefore, programs’ quality largely depends on using these
APIs correctly [6]. Multiple studies have shown that proper
use of a framework’s API requires an in-depth understanding
of its internal implementation details including underlying ar-
chitectural patterns and tactics, class structure, and set of tacit
sequence calls, data-flows as well as interfaces that need to be
implemented [1], [6]–[8]. Recent qualitative and quantitative
studies have reported that implementing architectural tactics is
more complex compared to delivering software functionalities,
and novice and non-architecture savvy developers struggle
in implementing architectural tactics and patterns [4], [6].
Soliman et al. [9] indicate that developers rely on sources such
as Q&A websites (e.g. StackOverflow) to find information
on how to use frameworks, implement tactics and patterns
for specific quality attributes [10]. However, prior research
have also shed light on the fact that even code snippets from
accepted answers of Q&A websites can contain design flaws,
bugs or vulnerabilities that get reproduced across multiple
software systems that reused that code snippet as-is [11], [12].

The prior work on framework API recommendations [13]–
[31] focus on low level, local data structure related con-
cerns and basic utility frameworks used to implement various
data structures. This line of work falls short of addressing
the challenges of implementing tactics and patterns and has
not fully studied frameworks used to bring a new archi-
tectural tactic or pattern into a given system design. There
are some recommender systems developed by researchers to
assist programmers in implementing architectural tactics and
patterns [4], [32], [33]. These approaches, however, do not
support implementing architectural tactics and patterns using
frameworks.

In this paper, we aim to study frameworks with architec-
tural intents that address tactics or patterns. We propose the
ARCODE approach, aiming to help programmers implement
an architectural tactic or pattern using API recommendations.
ARCODE leverages a novel learning technique to infer an
accurate API specification model which will be used for gen-
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erating recommendations. Artifacts of this paper are available
at ArCode’s repository [34].

The significance of contributions made by this paper is
briefly described below:
• To the best of our knowledge, this is the first study focusing

on inferring and using API specification of a software
framework with architectural implications (e.g., frameworks
implement architectural tactics and patterns).

• We present a program analysis approach to reverse engineer
a novel GRAPH-BASED FRAMEWORK API USAGE MODEL
(GRAAM), which is an abstract and semi-formal represen-
tation of how a framework’s API is being used in a given
program to implement tactics and patterns.

• An automated approach to analyzes the byte code of frame-
works and extracts INTER-FRAMEWORK DEPENDENCY
(IFD) model. Later the IFD can be used to identify programs
that violate a framework’s implicit API order constraints.

• An inter-procedural context-, and flow- sensitive static anal-
ysis approach to automatically infer a specification model of
frameworks from a repository of GRAAMs. This inference
is performed based on two sources, limited sample programs
and a framework byte code.

• An empirical investigation of the usefulness of the pro-
posed approach to recommend APIs and detect API mis-
uses for tactics’ implementation on two popular Java-based
frameworks, Java Authentication and Authorization Services
(JAAS) and Remote Method Invocation (RMI) frameworks.
The remainder of this paper is organized as follows. Sec-

tion II provides an overview of our approach. Section III
briefly describes data collection phase. Section IV presents
our graph-based API usage model (GRAAM) for a program.
Section V describes ARCODE, our automated approach for
inferring a framework API specification model from extracted
GRAAMs. An experimental evaluation of the approach is
presented in Section VII. Section VIII discusses threats to
validity of the approach. Section IX reviews related work.
Lastly, Section X concludes this paper.

II. OVERVIEW

ARCODE is designed to perform API recommendation and
misuse detection for application frameworks used to imple-
ment architectural tactics and patterns. In particular, these
frameworks exhibit a great degree of inter-process commu-
nication and API interactions beyond a single class, module
or process [4]. ARCODE aims to help novice developers,
and non-architecture savvy developers to use frameworks.
ARCODE learns the API specification of frameworks from
limited sound program examples. A program is considered
sound if it uses the framework API correctly to implement
the tactic. As shown in Figure 1, the approach has four phases.
1 Data Collection and Preparation: We create a code

repository of programs that incorporate the framework of
interest. Section VII use learning saturation as a measure
of indicating how many training projects are required.

2 Training Data Pre-Processing and Validation: Given
the training data, we perform a context-, path-, and

flow-sensitive static analysis to create an inter-procedural
graph-based representation of API usages for each pro-
gram. In this phase, we ensure that only sound training
programs will be included in our training data. To guar-
antee the syntax correctness, we first compile programs
and generate their jar files. Moreover, to verify that a
program is semantically error free (w.r.t. API usages),
we use a novel technique to extract INTER-FRAMEWORK
DEPENDENCY (IFD) model from the framework’s in-
ternal source code. This model encompasses mandatory
order constraints of APIs that are enforced by the frame-
work and must be preserved in any given program. This
approach identifies and rules out incorrect API usages and
API violations. Leveraging the IFD model, we separate
sound programs from those that violate implicit rules of
API usage required by the framework.

3 Training: For each sound program, we create its Graph-
based Framework API Usage Model (GRAAM). This
model demonstrates how the framework API was used
in a given validated training data. Finally, via a recursive
learning method the framework API specification model
is created from a set of generated GRAAMs.

4 Recommendation: The learnt model is used in this phase
to implement a recommender system guiding program-
mers in using APIs. Specifically, this system analyzes the
program under development and recommends what APIs
should be considered and how they should be used in
that program to correctly implement a tactic or a pattern.
Furthermore, if there are API misuses, ArCode will detect
and recommend fixes.

III. DATA COLLECTION AND PREPARATION PHASE

The first phase of this approach is focused on collecting
a set of projects that uses a framework of interest. These
projects should match the following criteria: (i) it imports and
uses the framework API, and (ii) it is syntactically correct.
For checking the first condition, we scan the source code and
check for API statements in the code. To guarantee the syntax
correctness (second condition), we compile the programs to
generate their JAR files.

IV. TRAINING DATA PROCESSING AND VALIDATION
PHASE

In the previous phase, we obtained collected projects that
use a framework API and are compilable. However, these two
characteristics do not guarantee these projects to be sound.
Therefore, this second phase focuses on finding sound projects
that can be used for training.

Distinguishing sound and unsound projects require a so-
phisticated program representation model that can capture
fundamental information regarding the usage of the framework
APIs including but not limited to object instantiation, static
and non-static method calls, as well as static and non-static
field accesses. These constructs can be scattered over multiple
methods, which requires an inter-procedural analysis of the
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Fig. 1: Overview of our approach (ARCODE)

program. Such a representation must also capture implemen-
tation of interfaces as well as inheritances of abstract classes
of the framework. Moreover, this model shall be able to
represent relationships between the framework APIs, allowable
data dependencies between these methods, the logical and
a usecase-driven order of method calls, and semantically
equivalent sequences of API calls.

In this phase, we present an approach to pre-process the
training data to (1) extract the above elements, and (2) validate
the training data so projects which incorrectly implement
tactics/patterns can be eliminated from the training process.

A. Motivating Examples

Listing 1 and Listing 2 show two real-world code snippets
of the authentication tactic [3] implemented using the JAAS
framework. The correct implementation of this security tactic
requires a careful sequence of API calls and manipulations
of data objects. Although these two code snippets implement
authentication tactic in a different code structure, they both:
create a Subject object and an object that implements the
CallbackHandler interface and pass them to the constructor of
the instantiated LoginContext object; and then call the login()
method from LoginContext.

In addition to the above statements, the code in Listing 2
goes further and calls the getSubject() method from a Login-
Context object (line 11) and calls the getPrincipal() method
from a Subject object (line 12).

From these two examples, we observe the followings:
- Observation #1: Only a subset of statements in a program
(the highlighted lines) are related to the framework of interest
and should be part of a framework API specification model.
- Observation #2: The framework-related statements could
be scattered across multiple methods. Thus, the framework
API specification model shall be able to interconnect these
statements that are within different scopes.
- Observation #3: Multiple (sub) programs with the same
behavior might be written slightly different. For instance, both
code snippets in Listing 1 and Listing 2 create Subject and
CallbackHandler objects to be passed to the constructor of
LoginContext. Although the order of object instantiation in
two code snippets is different, it does not change the behavior
of the program.

1. public class TestJaasAuthentication {
2. public static void main(String[] args) {
3. String user = System.getProperty("user");
4. String pass = System.getProperty("pass");
5. boolean loginStatus = true;
6. try {
8. LoginContext loginContext = getLoginContext(user,pass);
9. loginContext.login();
10. } catch (LoginException e) { loginStatus = false; }
11. if(loginStatus) System.out.println("Login Successful.");
12. else System.out.println("Login Failed.");
13. }
14. private static LoginContext getLoginContext(String u, String p) throws

LoginException{
15. CallbackHandler handler = new RanchCallbackHandler(u, p);
16. Subject subject = new Subject();
17. LoginContext lc = new LoginContext("RanchLogin", subject, handler)};
18. return lc;
19. }
20. }

Listing 1: Sample #1: A code snippet that implements the Au-
thentication tactic using JAAS framework in multiple methods

1. public class LoginUsecase {
2. private static Logger LOGGER = Logger.getLogger(LoginUsecase.class);
3. public static void main(String[] args){
4. BasicConfigurator.configure();
5. LoginContext lc = null;
6. System.setProperty("java.security.auth.login.config", "jaas2.config");
7. try{
8. Subject subject = new Subject();
9. lc = new LoginContext("rainyDay2", subject, new JAASCallbackHandler(

"user1", "pass1"));
10. lc.login();
11. Subject subject = lc.getSubject();
12. subject.getPrincipals();
13. LOGGER.info("established new logincontext");
14. }
15. catch (LoginException e){
16. LOGGER.error("Authentication failed " + e);
17. }
18. }
19. }

Listing 2: Sample #2: A code snippet that implements the
Authentication tactic using JAAS framework in a single method

Therefore, it is necessary to develop an API usage rep-
resentation model that adequately captures correct usages of
frameworks’ APIs while taking these concerns into account.
We developed a novel Graph-based Framework API Usage
Model (GRAAM) to address these concerns.

B. Pre-Processing and Validation

This pre-processing step identifies APIs that are used to im-
plement tactics and patterns in a program, validates their usage
based on several ground-truths obtained from the framework’s
source code, and creates Graph-based Framework API Usage
Models (GRAAMs) for correct API usages.

We follow a four-step process: (1) System Dependence
Graph (SDG) extraction, (2) Slicing of the SDG, (3) Removal
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of API usage violations, and (4) Generation of Graph-based
Framework API Usage Models (GRAAMs).

1) System Dependence Graph (SDG) Extraction: First, we
perform an inter-procedural static analysis on a program and
extract its context-sensitive Call Graph using 1-CFA algo-
rithm. A call graph is a directed graph representing relation-
ships between caller and callee methods in a program [35]. A
1-CFA context-sensitive callgraph [36] distinguishes between
situations where a method m3 is being called from m1 or m2.
This type of call graph considers the possibility of different
behaviors of the program in callee method (e.g. m3) based
on different caller methods (e.g. m1 or m2). For the sake of
scalability, we did not choose a higher sensitivity of context
(i.e., n-CFA for n > 1).

Next, we compute the System Dependence Graph (SDG)
of the program under analysis. An SDG is a directed graph
representing a whole program [37]. The nodes in this graph
are statements in the program and the edges are either data or
control dependencies between nodes.

Since we incorporate a context-sensitive call graph, the
constructed SDG holds the following characteristics:
– flow-sensitive: it accounts the order of execution of state-

ments in the program being analyzed;
– context-sensitive: it distinguishes different call sites. The

same method m can be invoked by different methods (call
sites). Hence, m is analyzed differently based on its corre-
sponding call site.

– inter-procedural: it represents the system as a whole, inter-
connecting statements within different methods based on the
caller-callee relationships;
We use T. J. Watson Libraries for Analysis (WALA)1 to

construct SDGs with the aforementioned attributes. We chose
WALA over other tools (e.g. Soot [38]) because it provides
built-in supports for extracting SDGs from a 1-CFA call graph
as well as different versions of Java language (e.g. Java 8).

2) Slicing the Extracted SDG: In this second step, we com-
pute a slice2 of the program p under analysis that includes all
statements s in the SDG that are either (i) a framework-related
statement; or (ii) that may be affected by a framework-related
statement or (iii) that affects a framework-related statement.
Framework-related Statements are the statements sf that
match the conditions (a)-(f) listed below. Each statement sf
can be related with the framework either directly (cases a, b,
and c) or indirectly via inheritance (cases d, e, and f ):
(a) it invokes a method from a framework data type (classes

or interfaces declared in the framework);
(b) it instantiates an object from a framework data type;
(c) it accesses a field from a framework data type;
(d) it invokes a method implemented by an application class

that inherits or implements a framework data type;
(e) it instantiates an object from an application class that

inherits or implements a framework data type;

1http://wala.sourceforge.net
2A program slice includes only the set of statements that may affect a point

of interest of the program (referred as the slice criterion) [39].

(f) it accesses a field from an application class that inherits
or implements a framework data type;

After computing a slice of the SDG, we remove all the nodes
(statements) in the remained graph that are not framework-
related yet keeping the direct and indirect dependencies be-
tween framework statements. The outcome of this process
is the program’s Primary API Usage Graph g = (V,E),
which is a directed labelled sub-graph of the SDG, with nodes
v ∈ V and edges e ∈ E where E ⊆ V × V . The set of nodes
V in a primary API usage graph is partitioned into three types:
start node Vstart, end nodes Vend and framework API usage
nodes Vf :
(1) A start node vstart ∈ Vstart represents the begining of the

framework usage in a program. Each primary API usage
graph starts with a single start node;

(2) Each end node vend ∈ Vend indicates the termination of
the framework usage. Each primary API usage graph ends
with one or more end node(s);

(3) Each framework API usage node vf ∈ Vf denotes a
framework-related statement in a program (i.e., Vf = Sf ).
Each vf has an associated instruction type type(vf ) (i.e.
object instantiation, field access or method invocation).
Furthermore, each vf has a target framework data type
target(vf ), that depends on the instruction type. In case
of object instantiations, target(vf ) is the framework class
type of the object; for method invocations, target(vf ) is
the target of the call; and for field accesses, the target(vf )
is the framework type that contains the field.

The edge set E in a primary API usage graph has two
partitions: sequence edges Es ⊆ (Vstart×Vf )∪(Vf×Vend)∪
(Vf × Vf ) and data dependency edges Ed ⊆ Vf × Vf :

(1) A data dependency edge edata = vsrc
data−−−→ vdst indicates

that vdst uses data that has been defined by vsrc.
(2) A sequence dependency eseq = vsrc

seq.−−→ vdst indicates
that vdst is used after vsrc in the program.

Figure 2a and Figure 2b show the primary API usage graphs
for the code snippets in Listing 1 and 2. We use solid edges to
show data dependencies and dashed edges to indicate sequence
dependencies. For example, since the CallbackHandler ob-
ject is used in the LoginContext’s constructor, there is a
data dependency edge between init CallbackHandler and init
LoginContext nodes in the primary API usage graphs. Nodes
with a lighter background represent statements that are related
with the framework indirectly (via inheritance).

3) Removing API Usage Violations: We explained so far
how we analyze a project to extract its API usage information
and represent it as a primary API usage graph. However, we
want to eliminate any erroneous API usages in our training
corpus. Therefore, we need a reliable ground truth to identify
such incorrect usages in a code repository and filter them out
from the training data.

ARCODE analyzes the framework’s source codes and cap-
tures the API usage rules that are not visible to the developers,
but are implicitly reflected in the source code of frameworks.
To do so, it performs a static analysis of the framework’s
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Fig. 2: Extracted primary API usage graphs from sample code
snippets

source code to capture implicit data dependencies between
APIs of a framework. Since this information is obtained
directly from the framework, not from programs that use
the framework, it could be considered as a ground truth for
identifying API misuses.

The main idea is to leverage reader-writer roles of API
methods inside a framework to find dependencies between
them. Using these dependencies, one can find partial API strict
orders that must be followed in a program. Therefore, API
misuses in a program could be identified with confidence by
finding violations from these strict orders. Writer and Reader
methods are defined as:
– Writer method: A method is considered as a writer regarding
a specific class field if it changes the value of that specific field
somewhere in its body.
– Reader method: A method is considered as a reader regard-
ing a specific class field if it uses the value of that specific
field somewhere in its body.

…

…
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Writer
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Writer
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Fig. 3: Extracting Inter-framework Dependencies between
getSubject(), logout(), and login() methods which are three
API methods inside LoginContext class (JAAS framework)

As an example, Figure 3 shows three methods from Login-
Context class in the JAAS framework. This class has various
fields including subject and loginSucceeded. While method

Version 4

LoginContext.login()
LoginContext.getSubject()

LoginContext.logout()
LoginContext.subject

LoginContext.subje
ct

LoginContext.loginS
ucceeded

Fig. 4: IFD Model based on Fig. 3

login() assigns values (writes) to subject and loginSuc-
ceeded fields, methods getSubject() and logout() use (read)
these fields’ values. Thus, getSubject() and logout() methods
are dependent to some data generated in login() method. We
extract these information and create our Inter-Framework
Dependency (IFD) model. The IFD built for the framework’s
code shown in Figure 3 is depicted in Figure 4.

We use IFD model for identifying incorrect programs w.r.t.
a framework usage. If a programmer has a framework-related
statement s2 in a program before another framework-related
statement s1 while based on IFD model s2 reads data gener-
ated by s1 (s1

data−−→ s2), then, that program is considered as
an incorrect program.

4) Generating Graph-based Framework API Usage Models
(GRAAM): The last step of pre-processing and data validation
phase focuses on creating a representation of each training
data, a Graph-based Framework API Usage Model (GRAAM),
which can be used by ARCODE’s learning algorithm. We
provide a definition for a GRAAM further in this section.

As discussed earlier, it is possible that two programs with
different sequences of framework-related statements imple-
ment the same tactic. For example, although Listing 1 and
Listing 2 implement the same use case, the instantiation order
of Subject and CallbackHandler in their programs and so,
in their corresponding primary API usage graphs (Figure 2a
and Figure 2b) is different. We call these sequences of API
usage nodes as Semantically Equivalent API Sequences.
Two sequences of framework usage nodes, seq1 and seq2, are
semantically equivalent if both conditions are true:
• there is a bijection between the nodes in seq1 and seq2.

Each paired nodes s1 ∈ seq1 and s2 ∈ seq2 have the same
type and target framework type, i.e. type(s1) = type(s2)
and target(s1) = target(s2); and

• the two sequences are isomorphic considering only the data
dependency between APIs in each sequence.
As a result, a Graph-based Framework API Usage

Model (GRAAM) is a directed graph g which has the same
set of nodes as a primary API usage graph, but a different edge
type: API Order Constraint edges. Semantically equivalent
API sequences have a single representative in a GRAAM.
In other words, two different programs with the same be-
havior (w.r.t. APIs of the same framework) have isomorphic
GRAAMs.

For example, parts of the programs in Listing 1 and List-
ing 2 including instantiation of Subject, CallbackHandler,
LoginContext, and calling login() method, implement the
same tactic (authenticate actors). Thus, their corresponding
sub-GRAAMs are the same. This property of GRAAM enables
us to have the same representation for semantically equivalent
API usages in different programs. Hence, when we look at a
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Fig. 5: Built GRAAMs for programs in (a) Listing 1 and
(b) Listing 2. Since both programs use semantically the same
API sequences for creating a LoginContext object and calling
login() method, their corresponding Sub-GRAAMs confined
by the purple dashed line are isomorphically the same.

code repository, we can correctly identify the same API usages
and compute their frequencies.

To create a GRAAM, we (i) start with a validated primary
API usage graph, (ii) remove all the sequence edges except
edges from start node and edges to end node(s), and (iii)
add relevant edges from IFD model to the graph. To be
more specific, this graph is built based on framework-related
statements identified in the program, their data dependencies
captured from the program, plus data dependencies mined
from the framework’s source code. The reasoning behind
removing sequence edges and keeping data edges is that if
the data produced in an API call a1 is not being used by an
API call a2, it means that calling a1 before a2 in the program
is not required, i.e., the order of a1 and a2 does not affect the
program’s behavior. We reflect this non-restriction situation in
our GRAAM by eliminating this order constraint between a1
and a2.

Figure 5 shows the created GRAAMs for the examples
in Listing 1 and 2. These GRAAMs are created based on
the primary API usage graphs depicted in Figure 2 and the
IFD model shown in Figure 4. For instance, the edge be-
tween LoginContext.login() and LoginContext.getSubject()
in Figure 5b comes from data dependency between LoginCon-
text.login() and LoginContext.getSubject() captured in IFD
model depicted in Figure 4. As shown in Figure 5, parts of
programs in Listing 1 and Listing 2 that implement the same
thing have the same sub-GRAAMs.

V. TRAINING PHASE: INFERRING A FRAMEWORK API
SPECIFICATION MODEL (FSPEC)

ARCODE uses the repository of created GRAAMs to infer
the Framework API Specification Model (FSpec).

A. Framework API Specification Model (FSpec)

We use the collected sound GRAAMs to build a unified
graph-based Framework API Specification Model (FSpec)

Start Node

End Node

Init CallbackHandler(…)

Init LoginContext(…)

Init Subject(…)

LoginContext.login()

LoginContext.getSubject()

Subject.getPrincipals()

2 2

2 2

2

End Node

11

1

1

Fig. 6: Built Framework API Specification Model (FSpec)
from depicted GRAAMs in Figure 5a and Figure 5b

which represents correct ways to use the framework. This
model aims to (a) reflect only possible correct combinations
of API calls, (b) to contain only paths that represent a
correct framework’s API call sequence, and (c) to create one
representative for all the semantically equivalent API usages.

Figure 6 shows a Framework API Specification model
(FSpec) built from the GRAAMs shown in Figure 5a and
Figure 5b. Similar to a GRAAM, an FSpec encompasses three
types of nodes: start node, end node, and framework-related
node. An FSpec has the same edge type as a GRAAM, API
order constraint edge. This type of edge represents the strict
orders of framework APIs one should follow to correctly
incorporate that framework in a program. However, FSpec
has a new label on each edge: frequency. Frequency of a
sub-graph of FSpec represents the number of times that the
corresponding API usage was observed in the code repository
of sound programs.

For instance, all edges between the start node and login()
node in Figure 6 are labeled with frequency of 2. That means,
there were two (semantically) equivalent API usages observed
in the code repository that both (i) instantiated objects of
Subject and CallbackHandler, (ii) used those objects to
instantiate an object of LoginContext, and then, (iii) called
login() method of LoginContext. After the login() node,
however, the frequencies are changed to 1. It means that
there was a program that has not used any other APIs of
JAAS framework after login() method. In addition to that, the
model shows that there was a program that continued calling
framework APIs and had two more API calls.

FSpec represents semantically equivalent API usages in a
single representation. This property shows the generalizability
of ARCODE in the sense that when it visits an instance of
correct API usage in a program, a representative of all the
semantically equivalent API usages to the originally visited
one would be added to the FSpec under construction.

B. Inferring a FSpec Model from Sound GRAAMs

To infer a framework’s API specification model (FSpec),
ARCODE finds mergeable parts of created sound GRAAMs.
We will define mergeable parts of GRAAMs later in this
section. Through the inference process, if ARCODE finds
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meargable part of a GRAAM similar to one that was pre-
viously added to the FSpec model, then, it increases the
frequencies of the corresponding edges in FSpec. Otherwise,
it adds the corresponding new nodes to the model and sets
their edge frequency to 1.

To guarantee that all paths from start to end nodes represents
a correct framework usage, we have provided inference rules
to identify Mergeable sub-GRAAMs. Two sub-GRAAMs
are mergeable if (i) both include the start node, and (ii)
their corresponding sequences are semantically equivalent.
Assuming that there are two GRAAMs g1 and g2, we explain
how the merging algorithm works such that g2 merges into g1.
• We first identify all the mergeable sub-GRAAM pairs from
g1 and g2;

• Amongst the identified merging candidates, the pair with the
highest number of nodes is selected;

• The frequency of edges from sub − g1 increments by the
frequency of corresponding edges from sub− g2;

• The remained parts of g2 which are not included in sub−g2
will be added to g1;

• We repeat this process until there are no more mergeable
sub-GRAAM pairs from g1 and g2. This process guarantees
that in the end, no semantically equivalent sequences exists
in the start node’s children list.
To clarify this algorithm, there are three different parts in

Figure 7 that could be a candidate for merging purposes. The
upper part starts with the root (e.g. node 1 from g1 and node
5 from g2) of the graph and may (or may not) contain some
successors of the root. The middle part does not contain root
nor any end nodes. The lower part contains at least one end
node and may (or may not) include predecessors of the end
node. To merge two GRAAMs g1 and g2, the algorithm only
considers their upper parts to avoid the emergence of incorrect
paths. Figure 7 provides an example of this situation. Assume
that 1→ 2→ 3→ 4 and 5→ 2→ 3→ 6 are two correct API
sequences. Upon merging g1 and g2 from their middle part,
two incorrect paths (1 → 2 → 3 → 6 and 5 → 2 → 3 → 4)
are appeared in the merged graph.

VI. RECOMMENDATION PHASE

Once ARCODE is trained and a FSpec model is built,
it can be used to help programmers correctly implement
architectural patterns and tactics through providing correct
API recommendations. The recommendation system has the
following steps:

1) Process Partial Program: it takes in a partial program
written by a programmer and creates its GRAAM;

2) Context Based Recommendation: the recommender en-
gine finds the most similar semantically equivalent API
usages inside the FSpect to the given GRAAM. Then it
finds changes needed to be performed on the GRAAM to
make it a correct implementation of a tactic or pattern.

3) Ranked List: the outcome is provided in the form of
ranked list of API recommendations (e.g. remove, add,
replace). The rank of each recommendation in the list is
determined based on the frequency of its corresponding
edges in the FSpec.

ARCODE can identify the next APIs required to be called in
a program to make it a complete and correct implementation.
It also is able to detect misuses of APIs in a program and
recommend fixes for it. Some API misuses are not detectable
in the compile time since it does not violate syntax of the
language. However, these are serious semantic bugs which can
compromise the entire objective of a tactic/pattern.

VII. EXPERIMENTAL STUDY

To show the practical usefulness of our approach for com-
plex software systems, we used it in experimental studies
of JAAS (Java Authentication and Authorization Services)
and RMI (Remote Method Invocation) frameworks to gen-
erate recommendations for projects that incorporate them
to implement tactic and patterns. JAAS addresses security
architectural concerns in applications, and RMI supports inter-
actions between different modules and methods in distributed
systems. In these two studied frameworks (i) we investigate
whether ARCODE can learn correct ways framework APIs are
invoked to implement tactics/patterns. We rely on a learning
saturation experiment; (ii) we evaluate the accuracy of API
recommendation to help programmers implement tactics and
patterns, and (iii) we analyze ArCode’s performance in API
misuse detection.

Additionally, we compare ARCODE’s performance with
MAPO [21] and GrouMiner [40], two approaches which were
developed for API recommendation and misuse detection, but
not evaluated on frameworks with architectural implications 3.

A. Data Collection
To create the training data for ARCODE, we identified a

large number of popular open-source projects using JAAS
and RMI frameworks. These projects were collected from
different public and open-source code repositories including
GitHub, BitBucket and Maven. A team of three members
peer reviewed programs and compiled them to generate their
bytecode. The purpose of reviewing programs was to make
sure that each selected program implemented authentication
and authorization tactics and inter-process communication
patterns and had more than one API call in its code. The
final repository contains 51 projects that uses JAAS, and 50
projects that uses RMI. This repository has a total 1,106,886
lines of code (Java files), 8,831 classes and 9,600 methods.

3Frameworks used to implement tactics or patterns
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Fig. 8: Model saturation while creating FSpecs of JAAS and
RMI frameworks

B. Finding API Usages in Programs

We created GRAAMs for projects in the code repository
based on the approach discussed in this paper (Section IV).
We also created API usages for GrouMiner, and MAPO
approaches accordingly. It is worth mentioning that a program
may have more than one entrypoint 4. Therefore, it is possible
that more than one API usage can be found per program.

One issue we encountered in our experiments was failure
of GrouMiner when the number of nodes in its API usage
graph (i.e. graph-based object usage model) precedes 19. Since
authors of GrouMiner provided their source code, and to stay
faithful to the code, we did not make any changes to its source
code. Therefore, we exclude API usage graphs with more than
19 nodes from our experiment.

C. ARCODE Learning Saturation

To investigate the learning capability of ARCODE, we create
its learning curve. This curve represents the rate of new
knowledge added to FSpec comparing to the size of new
GRAAMs it visits. In the case that ARCODE has a good
learning ability, the rate of growth of FSpec should decrease
by visiting more GRAAMs.

Figure 8a and Figure 8b show learning curve of ARCODE
while creating FSpec for JAAS and RMI frameworks in the
training phase. Blue curves represent the cumulative size of k
visited GRAAMs by ArCode. Orange curves show the size of
FSpec after visiting k GRAAMs. To conduct this experiment,
we first sort the GRAAMs based on the number of their
nodes. Then, we feed ARCODE starting with bigger chunks of
information. While there is an increase in the number of FSpec
nodes in the initial steps, after visiting 24 GRAAMs of JAAS-
based programs, we observe reaching 90% completion of the
final FSpec model. It means that after this point, there would
be only 10% new information learnt by FSpec. Likewise,
ARCODE reaches 90% completion of its FSpec after visiting
51 GRAAMs of RMI-related projects. The ARCODE learning
curve indicates that:

4A program’s entrypoint is the first method invoked once it starts executing
(e.g. the main() method).
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Fig. 9: Accuracy of ARCODE, GrouMiner, and MAPO for
next API recommendations on JAAS and RMI experiments

Finding 1: Two case studies of RMI and JAAS indicate
that there are limited correct ways that developers incor-
porated these frameworks in their program; ARCODE’s
learning technique was able to enumerate and learn all
these possible sound usages of the frameworks.

D. API Recommendation to Implement Tactics/Patterns

To evaluate the quality of recommendations, we randomly
select 80% of the projects of each framework in the code
repository as training and the remaining 20% as testing data
set. We use the same train and test data sets for ARCODE,
GrouMiner, and MAPO approaches to make a fair comparison
between their performance.

To generate labeled test cases for this experiment, we first
create GRAAMs of each program in the test data set and
then, we remove the last node of each GRAAM. Since a rec-
ommendation system is expected to recommend the removed
API, that API would be used as the label of that test case.
Next, we ask the recommendation system to return a ranked
list of recommendations for each test case. Finally, based
on the position of the correct recommendation in the ranked
list, we compute the top-K accuracy of the recommendations
(k : 1 → 10). Since we expect only one correct answer for
each test case, the results for top-K precision and top-K recall
would be the same as top-K accuracy in our experiments.

We also computed the top-K accuracy of recommendations
for MAPO and GrouMiner approaches. Figure 9 shows the
result of this experiment. In the case of JAAS framework (Fig-
ure 9a), ARCODE achieved a 59% accuracy while considering
only the top ranked (top-1) API recommendation. However, if
we consider top-2 recommendations, the accuracy improves
to 84%. Finally, if we consider top-8 APIs (or beyond),
the accuracy of recommendations provided by ARCODE tops
94%. Compared to ARCODE, the accuracy of MAPO and
GrouMiner reaches 50% and 41% for JAAS-based programs.
For RMI-based programs, ArCode provides 91% accuracy for
top-2 recommendations and beyond. The highest accuracy for
MAPO and GrouMiner is 43% and 17%. Based on our obser-
vation, the diversity of API usages in JAAS-based programs is
fewer compared to those of RMI-based programs. As a result,
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all approaches have their best performance in JAAS-based
repository. Nevertheless, ARCODE still outperforms MAPO
and GrouMiner in both JAAS- and RMI-based tests.

These results bring us to the following observation:

Finding 2: ArCode’s next API recommendation outper-
forms the prior work significantly (40% and more). In
both case studies top-2 recommendations were reliable
(85% in JAAS and 95% in RMI), however ArCode top-1
recommendations in RMI were more reliable than JAAS.

E. API Misuse: Detecting a Missed API Call

One of common API missuses is missing a critical
API call while implementing a tactic. Authenticating users
with LoginContext.login() without first calling HttpSes-
sion.invalidate() [4] or checking the role of a user before
granting access are just some of many examples.

To examine the accuracy of our approach in identifying
such cases of API misuse in programs, similar to the API
recommendation experiment (Section VII-D), we generate
labeled test cases for this experiment. To do so, we randomly
remove an API call from each program in an iterative manner.
We were able to generate 77 test cases for JAAS-based and
80 test cases for RMI-based experiments. These test cases are
generated only from test projects. Then, we ask the system to
identify the missed API and recommend a fix for it.

Figure 10 depicts the result of this experiment. In the case
of the JAAS framework (Figure 10a), ARCODE achieved a
78% accuracy considering only the top ranked (top-1) API
recommendation. Top-2 recommendation shows 91% accuracy
and finally, the accuracy of recommendations provided by AR-
CODE tops 95% for top-8 recommendations and beyond. Com-
paring to ARCODE, the accuracy of MAPO and GrouMiner
reaches 34% and 28% respectively. This test scenario is more
complicated compared to the previous test case (next API
recommendation) because, in addition to the ancestors, the
descendants of the provided recommendation and the correct
answer should match as well. Therefore, the accuracy of
pattern-based approaches decreases in this usecase.

Based on the results of this experiment we found:

Finding 3: ArCode can identify a missed API in im-
plementation of tactics/patterns and provide a recom-
mendation to fix it. ArCade’s top-2 recommendation
accuracy in JAAS and RMI case studies are above 90%.
Furthermore, ArCode outperforms prior work with 60%
and more, making it a more reliable approach for API
recommendations to implement tactics and patterns.

F. API Misuse: Wrong API Usage

Another type of misusing APIs in a program includes calling
APIs in a wrong order in that program. Although such a
program might not show a compile time error, the expected
tactic is not implemented correctly. In this experiment, we
create test cases that include an incorrect API usage in each
project (e.g. incorrect order of APIs). Then, we ask the system
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Fig. 10: Accuracy of ARCODE, GrouMiner, and MAPO for
missed API recommendations on JAAS and RMI experiments
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Fig. 11: Accuracy of ARCODE, GrouMiner, and MAPO for
fix recommendations on JAAS and RMI experiments

to first, identify this API misuse and second, recommend a fix
to make that API usage correct. To create such test cases, we
go over all APIs in each program iteratively, selecting two
random APIs and swapping them to generate incorrect usages
of APIs. Following this approach, we were able to generate
432 test cases for JAAS and 246 test cases for RMI framework.
Then, we ask the system to identify this API misuse and
recommend a fix for it. Like the two other test scenarios,
the system returns a ranked recommendation and we compute
accuracy for top-k (k : 1→ 10) recommendations.

The result of this experiment is demonstrated in Fig-
ure 11. In the case of JAAS framework, ARCODE shows 77%
accuracy for top-1 recommendations. Also, if we consider
8-top returned recommendations (or beyond), the accuracy
of ARCODE tops 97%. The results show that MAPO and
GrouMiner reach 7% and 4% accuracy respectively. This test
scenario is the most complicated case compared to the previ-
ous experiments. Since we are swapping two APIs, ancestors
and descendants of both the first and second APIs should
be matched against those that are recommended. Thus, we
observe accuracy degrading for MAPO and GrouMiner in
such experiments. Based on the results of this experiment,
we observed that:
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Finding 4: ArCode accurately detects wrong API usages,
which are more complicated compared to finding a missed
API call in a tactic/pattern, and generates fix recommen-
dations for them. It outperforms (60% to 90%) two of the
prior work (GrouMiner and MAPO).

VIII. THREATS TO VALIDITY

ARCODE aims to filter out incorrect API usages from
a code repository and then, learn correct API usages from
the remained programs. While the learnt framework API
specification model (FSpec) does not include incorrect API
usages, we can not claim that it covers all the possible correct
API usages. Another notable point is that ARCODE leverages
conservative merging rules while creating an FSpec. Although
it can guarantee that no incorrect API usage emerges in the
final FSpec, it can affect the efficiency of the training phase
as well as the size of the final FSpec adversely. Moreover, the
Inter-framework Dependency (IFD) model introduced in this
paper is created based on static analysis over the source code
of the framework to find reader-writer roles of API methods
inside that framework. However, some modern frameworks
use dynamic features of object oriented languages (e.g. reflec-
tions) to implement the framework. In these cases, performing
dynamic analysis alongside static analysis would result in
capturing more accurate dependencies between APIs.

Concerning the evaluation of ARCODE provided in this
paper, we used two popular Java based frameworks, JAAS and
RMI. For generality purposes, conducting experiments with
more frameworks would be advised.

IX. RELATED WORK

There have been numerous works on identifying frame-
works’ API specifications and creating models that enable API
recommendation and misuse detection systems. The aim of
these systems is to help programmers correctly use API calls
and prevent incorrect usage of APIs in their programs [41],
[42]. Many researchers define patterns of API co-occurrences
in the same scope of a program as an API specification. Works
in this category find the frequency of co-appearance of APIs
in the same context and use it to create API co-occurrence
patterns. While most of the approaches in this category find
such patterns within a method [26], [27], [29], [43]–[49], some
go beyond and find patterns in a bigger scope (e.g. class
or program) [18], [50]. We have found these works useful
for simple API recommendation or misuse detection tasks.
However, they become impractical when the problem gets
more complex as to accurately (i) identify an incorrect API
order in a code, or (ii) recommend the next API based on the
order of other APIs in a sequence.

To address the aforementioned issues, more sophisticated
approaches find API sequence patterns in a code repository.
This is an important specification needed for a correct API rec-
ommendation or misuse detection. The developed techniques
in this category range from finding partial API usage patterns
and creating rule-based specifications [13], [31], [51] to min-
ing a complete sequence of API usage patterns [14], [16],

[17], [21]–[24], [52]–[54]. As an example, MAPO [21], one
of the most respected API specification miners, aims to create
patterns of API usage sequences and leverage that to find
relevant code samples for programmers. Although sequential
API specification miners take API order into account, they
are not able to: (i) provide more API-related information in a
program (e.g. data dependency) than the order of appearance
in the code, and (ii) distinguish between two semantically
equivalent sequences (Section IV).

Graph-based API pattern finders are the most advanced
methods developed to cover sequence-based API pattern min-
ers shortcomings and create more detailed API specifications
(e.g. data dependency between APIs). Specifically, these works
aim to track the usage of APIs related to a single object [15],
[40], [55]–[57] or multiple objects [19], [25], [58]–[60] in a
specific scope in programs. For instance, GrouMiner [40], a
well-appreciated graph-based API pattern miner, finds rela-
tionships between APIs of the same type in a method. While
the mentioned works present more detailed API specifications,
they still: (i) do not track dependencies across different scopes
(inter-procedural), (ii) can not represent the whole context
of an API usage, and (iii) can not identify semantically
equivalent, yet in different order, API usages in programs.

ARCODE performs an inter-procedural program analysis
and infers a context-sensitive graph-based API specification
for frameworks. This approach produces isomorphically the
same graphs for API usages that have different sequences but
are semantically equivalent.

X. CONCLUSION & FUTURE WORK

Obtaining API specification of a framework can enable the
correct implementation of architectural tactics and patterns.
This paper introduces ARCODE, a novel approach for inferring
frameworks’ API specification from limited projects. It relies
on a Graph-based Framework API Usage model (GRAAM),
which is an inter-procedural context-, and flow-sensitive rep-
resentation of APIs in a program. Furthermore, ARCODE also
extracts inter-framework dependencies between APIs from
framework source code and uses them to identify incorrect API
usages in programs. It uses an inference algorithm to combine
all extracted GRAAMs into a framework specification model.
In a series of experiments, we demonstrated that it is possi-
ble to infer a framework specification model that accurately
captures correct API usage to implement tactics and patterns.
Moreover, recommendation systems empowered by the created
framework specification model are able to provide accurate
API recommendations, identify API misuses and provide a fix
recommendation. Future work includes exploration of addi-
tional frameworks with regard to our technique and leveraging
dynamic analysis alongside static analysis to extracting inter-
framework dependencies.
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