
Prep
rin

t
An Automated Approach to Recover the Use-case

View of an Architecture
Joanna C. S. Santos

Rochester Institute of Technology
Rochester, NY. United States

jds5109@rit.edu

Sara Moshtari
Rochester Institute of Technology

Rochester, NY. United States
sm2481@rit.edu

Mehdi Mirakhorli
Rochester Institute of Technology

Rochester, NY. United States
mxmvse@rit.edu

Abstract—Many tools and techniques were described in the
literature for automated recovery of software architecture from
software artifacts, such as code. These approaches generate
models of software architecture at different levels of granularity
and notations. Whereas there is a vast literature in recovering
components, packages, and interactions between them, we lack
automated approaches for recovering the use-case view of an
architecture. In the 4+1 view of the architecture, use-case view
or scenarios represents a view of the architecture in terms of
the systems’ core functionalities provided to end-users. This
view is essential in understanding the system and its underlying
architectural decisions. Manually recovering and documenting
the application’s scenarios from source code is time-consuming,
as large-scale enterprise systems can have a large number of
scenarios. In this NEMI paper, we present a novel automated ap-
proach for recovering the scenarios from Web applications source
code. These scenarios are shown in use case diagrams alongside
with sequence diagrams that further describe how each use case
is implemented in the system. Our approach works under the
assumption that the URLs (endpoints) of a Web application can
give us clues to the system’s use cases. Therefore, our technique
combines a set of heuristics and static analysis in order to detect
the endpoints in a Java Web application as well as the backend
classes and methods that will process the request. Subsequently,
it uses Natural Language Processing (NLP) techniques to extract
use cases from these identified endpoints and uses the computed
program slices to generate sequence diagrams for each identified
use case. We conducted an initial evaluation of our approach
by detecting endpoints in Sagan, an existing open-source Web
application. We then demonstrate the use cases generated and
how their implementation looks like through sequence diagrams.

Index Terms—Architecture recovery, Use case view, Web ap-
plications endpoints

I. INTRODUCTION

Over the last decade, different tools and techniques have
been proposed for reconstructing architecture from source
code or other artifacts [1], [4], [10], [12], [13], [16]. This
is mainly conducted to understand the program structure or
architecture so that developers can modify the eroded system
and restore it to the intended architecture, or renovate the
architecture by changing it to a new optimal design.

A recovered architecture can be presented in different ways
at different levels of formalisms (simple boxes and lines, or
even formal languages). In the 4+1 model [8], an architecture
is modeled using four views (logical, process, development
and physical) plus one view of the architecture that governs
all the other views. This “+1” view is the use-case view of the

architecture and it models the system’s main functionalities
(i.e., the scenarios). As pointed by Kruchten, although one
can omit a view (e.g., the physical view for smaller systems),
the use-case view is always crucial because it is the driver
for all the other views [8]. Despite this importance, to this
date, we lack an automated approach that can recover scenarios
from software artifacts to aid architects in communicating and
understanding the underlying software’s architecture.

One of the key challenges for automated recovery of the
use-case view of a system’s architecture is to extract semantics
from software artifacts (whose abstraction level is at a much
lower level compared to that handled by humans) in order
to generate meaningful and understandable models. Previous
work on obtaining semantics from code to guide architectural
recovery mapped their recovered architecture to predefined
views [6], [7] or required architects to write queries [11].

In this NEMI paper, we argue that the endpoints (i.e., the
URLs that the application accepts HTTP requests) of Web
applications can give clues on the use cases implemented by
the system. As a result, they could be leveraged for the auto-
mated extraction of the use-case view of the architecture. This
way, we tackle the challenge of extracting semantics from low-
level software artifacts in order to help architects understand
and evaluate the underlying architecture. In this context, we
describe our early results in developing an automated tech-
nique to recover the use-case view of the architecture of Java
Web applications by relying on the application’s endpoints.
Our approach first performs static analysis of the backend
code and apply a set of framework-specific heuristics to find
the application’s endpoints specifications. These specifications
describe the following attributes for each endpoint: the Java
classes that listen to that URL (endpoint classes); the methods
from the classes that will actually process the request to that
URL (entrypoint methods); any other non-endpoint classes
that are involved in processing the request (related backend
classes); and a sequence of statements that will be involved
in processing the request (program slices). Subsequently, it
applies Natural Language Processing (NLP) techniques [9]
to infer the system’s use cases. Finally, we leverage the
program slices previously computed to communicate where
and how each use case is implemented via sequence diagrams.
Therefore, the output of our technique is the use-case view of
the architecture modeled in terms of UML use case diagrams



Prep
rin

t

alongside with sequence diagrams that further detail how each
functionality is implemented in the code.

II. APPROACH OVERVIEW

Figure 1 shows an overview of the approach, whose steps
are described in the next subsections.

A. Heuristic-Based Extraction of Endpoints Metadata

Under the assumption that an application’s URL can point
to the functionality provided by the system, our approach
first extracts endpoints metadata from the application’s source
code1. An endpoint’s metadata is the combination of its URL,
the entrypoint methods that process the request to that URL
and the classes to which these methods belong to.

Since the way an application implements the
classes/methods that will accept an HTTP request varies
according to the framework being used, we developed a set of
heuristics to detect the endpoint’s metadata. Table I lists the
applied heuristics. We currently offer support to the detection
of endpoints for applications that use the J2EE, Spring MVC
or the GWT frameworks.

The first set of heuristics (J1-J4) abstracts the cases in
which an application uses the standard Java Web API (J2EE).
In this case, Web applications implement Servlets and Filters
to process HTTP requests, which can be defined in an XML
file or via class annotations. The heuristic J5 is used to handle
the case where server-side scripts embedded in JSP files are
directly served to the client. The heuristics S1-S4 are used
to detect endpoints from applications that use Spring MVC,
a Web framework that follows the Model-View-Controller
architectural pattern. These heuristics detect the use of handler
mappings of the framework to declare URLs. The last heuristic
(G1) is used for supporting applications that used the Google
Web Toolkit (GWT). This heuristic extracts URL declarations
from module descriptors (an XML configuration file).

B. Extraction of Endpoints Specifications

Subsequently, we extract the endpoints specifications which
enrich the metadata from the previous step with two more
attributes: related backend classes (any other non-endpoint
classes that are involved in processing the request), and
program slices (a sequence of statements that will be executed
to process the request to the URL). To compute these specifica-
tions, we performed a 0-1-CFA (context-insensitive instance-
based) static analysis [5] to build a callgraph2, whose root
nodes are the entrypoint methods within the endpoints meta-
data previously extracted. From the callgraph, we then extract
the system’s Interprocedural Control-Flow Graph (ICFG) [14]
and traverses it to collect all the set of instructions reachable
by each entrypoint method (program slices) and the classes
that contain them (related classes).

1We use the application’s source code because some of the heuristics work
by parsing code annotations that may not be retained in the compiled JAR.

2Although we could perform the static analysis on top of the source code,
we use the JAR file for the pragmatic reason that we could generate a compiled
bytecode that includes all the dependencies recursively.

C. Extraction of the Use Case View

From the endpoints specifications computed on the previous
step, we apply NLP techniques to derive the use case view of
the architecture. This view is modeled as an use case diagram
along with a set of sequence diagrams that indicates how each
use case is currently implemented in the code.

1) Use Case Diagrams Generation: To generate a use case
diagram, we first need to identify a unique set of use cases
and select an appropriate name for it. Our goal is to derive use
case names that are short imperative sentences that describe
an action, i.e. phrases that start with a verb and followed by
its object (e.g., “Create account” or “Export access logs to
CSV.”). For each endpoint in the specifications extracted in
the previous step, we apply four different rules to find the use
case names. Overall, each rule encompasses three steps:

(1) Create a sentence s from an element in the endpoint
specification.

(2) Verify whether s is well-formed. To check for well-
formedness, we perform POS (Part-of-Speech) tag-
ging [15] (to identify nouns, verbs, etc) and dependency
parsing [2] (to determine relationships between words)
on top of the generated sentence. A sentence is then
considered well-formed if the root node of its semantic
graph [3] is a verb and the object for that verb is explicit.

(3) If the sentence is well-formed, we use it as the use case
name and move forward to generate a use case name for
the next endpoint. Otherwise, we proceed to the next rule
to generate a use case name for the current endpoint.

Each rule is described in detail below.
• Rule #1: We split the entrypoint method’s name by special
characters to obtain a list of tokens. We further split each
of these tokens by camel case. Then we create a sentence
by joining each token with blank spaces and capitalizing the
first letter (e.g., importTeamMembersFromGithub() is
converted to “Import team members from Github”).
• Rule #2: If the entrypoint method’s name is just a standalone
verb (e.g. “show()”) we need to find its object (i.e. the
receiver of the action expressed by the verb). We attempt to
find this object by searching for a noun. We first search within
the URL; if no noun is found, we perform the same attempt but
from the class name that has the entrypoint method. Hence, we
first tokenize the corresponding URL for the method (first by
“/”, then by camel case) and we iterate backward on this list of
tokens to find a noun. If we found a noun, we generate the label
by joining the method name and the newly found noun. If no
noun could be found in the previous step, then we repeat this
process but using the class name of the entrypoint method3.
If a noun was found, then we create a label by concatenating
the method’s name and the noun.
• Rule #3: We tokenize the classname (removing any suffixes)
and construct a sentence from it (e.g., AddAuthorServlet is
converted to “Add author” — the Servlet suffix is removed).

3We tokenize class name and remove its suffix (if any), then we search for
a noun in a backward fashion



Prep
rin

t
Fig. 1. Overview of our Automated Approach to Recover the Use-case View of an Architecture

• Rule #4: If none of the rules above found a proper sentence,
we create a use case label from the method name’s sentence.

It is important to highlight that some imperative sentences
are ambiguous during the POS tagging (e.g., the word “List” in
the imperative sentence “List published posts” is misclassified
as a noun rather than a verb). To tackle this problem we
perform POS tagging on top of two versions of the generated
sentence: one using the generated sentence as is, and another
one by prepending the preposition “To” followed by the
sentence (e.g., “To list published posts”). This helps the POS
tagger to correctly disambiguate words that can be both nouns
and verbs depending on its usage context.

To remove suffixes from class names in Rule #2 and
#3, we get all the classes within the endpoint specifications
and tokenize them by special characters and camel case.
Subsequently, we construct a graph where the nodes are tokens
and the edges represent the reverse order of the tokens in an
identifier (e.g., “UserDAO” creates an edge from “DAO” to
“User”). The suffixes are the root nodes in this graph, and we
use this computed set of suffixes to clean class names.

By applying the rules above we obtain a list of tuples that
have: use case name, its corresponding endpoint and entry-
point method. Since real systems can have a large number of
use cases, we group them by their architectural components.
To identify the components that a use case belongs to, we
extract the top-most path in the endpoint’s URL (e.g., the top-
most part of the URL “/admin/blog” is “/admin”).

2) Sequence Diagrams Generation: We traverse the pro-
gram’s Interprocedural Control-Flow Graph (ICFG) to derive
a sequence diagram. We compute this diagram by stepping
through the program’s ICFG starting from the entrypoint
method for the use case in order to list all method calls
reachable from the entrypoint method. To prevent overwhelm-
ing developer with potentially large diagrams, we include
application-only classes as participants in the sequence dia-
gram (i.e., built-in Java classes or external APIs are disre-
garded).

III. EARLY RESULTS

We demonstrate our technique using the Sagan4 project,
which is the code for the http://spring.io Web site.
• RQ#1: Does our technique correctly extract all the
application’s endpoints? In this research question, we evalu-
ate whether we can correctly enumerate the endpoints within

4https://github.com/spring-io/sagan

TABLE I
ENDPOINT DETECTION HEURISTICS

J2EE Heuristics
J1: Using the <servlet> and <servlet-mapping> tags in a web.xml file
J2: Using the <filter> and <filter-mapping> tags in a web.xml file
J3: Using the @WebServlet class annotation
J4: Using the @WebFilter class annotation
J5: All public server-side scripts

Spring MVC Heuristics
S1: Using the @Controller and @RequestMapping annotations
S2: Using a Bean Name Url Handler Mapping defined in an XML file
S3: Using ControllerClassNameHandlerMapping defined in an XML file
S4: Using Simple Url Handler Mapping defined in an XML file

GWT Heuristics
G1: Using the Entrypoints declared in Module Descriptors

a Java Web application. To this end, one of the authors
manually enumerated the endpoints (URLs) for Sagan to
establish the ground truth. To ensure that this ground truth
was trustworthy, we conducted a peer review in which we
asked an external developer (with 3 years of experience) to
scrutinize the accuracy of the manual dataset. Finally, we ran
our approach against these projects and computed its precision
and recall in detecting the Web endpoints.
RQ#1 Results: Our approach detected a total of 66 endpoints.
It achieved an 100% precision, but it missed 7 endpoints
for the Sagan project (89% recall). Our approach missed
these endpoints because the application used custom class
annotations to which our heuristics cannot detect.
• RQ#2: Can our technique generate meaningful use
case views? In this question, we verify to which extent
the automatically extracted use cases are meaningful for a
software engineer. For this purpose, we gave to an external
developer (the same developer as in RQ1) the generated Sagan
architecture’s use case view. For each extracted use case, we
asked the developer the following question: is the use case
appropriate (i.e., do you consider that it provides a proper
meaning to the system’s functionality represented)?
RQ#2 Results Figure 2 shows the use cases automatically
identified and grouped by component. Figure 3 shows the
sequence diagram for the use case “Delete post” (due to space
constraints, we cannot show the sequence diagrams for all use
cases). According to the developer, 41 out of these 57 (72%)
generated use cases had names that provided proper meaning
about the underlying system’s functionality. The developer
also pointed out that the use cases for the “Admin, Badge,
and Blog [components] communicate the most information”,
whereas the components “Tools, Understanding, and Webhook
do not provide much information. This is mostly due to the



Prep
rin

t

Webhook
Process tutorials

update

Process guides
update

Process
understanding

update

Process topicals
update

Process update

Questions

Show questions

Search

Search

Projects
List projects

Show
project

Team

Show team

Show profile

Trademark

View trademarks
homepageGuides

Load image

View tutorial

View index

View guide

Docs
List

documentation
types

List projects

Understanding

View subject

User

Blog

List published
broadcasts

List published
posts for year

List published
posts

List published posts
for year and month

List published posts
for category

List published
broadcast posts

List published
posts for date

Show post

Badges
Prerelease badge Snapshot badge

Latest badge Release badge

Tools

All sts downloads

Sts index

View tools
homepage

Eclipse index

Legacy sts
downloads

Sts welcome

Admin

Create post

Blog admin

Import team
members from

github

Resummarize all
blog posts

Edit profile form

Save profile

List

Edit post

Update post

Admin page Refresh blog posts

Edit team member
form

Save team
member

Save id

Delete id

Edit id

Get team admin
pageDelete post

Show post Create project

Fig. 2. UML Usecase Diagram Generated for the Case Study

Fig. 3. UML Sequence Diagram Generated for the “Delete post” use case

descriptions being uninformative and lacking the context to
get more information about what they mean (...)”.

It is important to highlight that although the project had a
total of 66 URLs, our approach generated 57 use cases since
the heuristics described in Section II-C introduced duplicated
names. During the diagram generation, we remove duplicated
labels within the same component.

IV. LIMITATIONS

The main limitation of our approach is that it highly
depends on whether developers provided meaningful identi-
fiers for methods, classes and URLs. Moreover, the sequence
diagrams are generated statically; and it is a well-known
problem that static analysis may fail to properly compute the
targets of method calls in face of polymorphism or dynamic
programming language features (e.g., reflection) [14]. Lastly,
our endpoint detection approach is currently tailored to Web
applications developed using J2EE, SpringMVC, or GWT.

V. CONCLUSION AND FUTURE WORK

In this NEMI paper, we explored the idea of leveraging a
Web application’s URLs (endpoints) to automatically infer the
use-case view of its underlying architecture. Our main insight
is that functionalities are usually separated into distinct URLs
(which are hierarchical in nature) and, as a result, we could
use them to guide the automated recovery of the use-case
view of a system. We then demonstrated our early results
in using this approach to recover the use-case view of an
open-source Web application. We evaluated it in terms of

precision and recall as well as by asking for feedback from
a software developer. The current results are promising. As
future work, we are investigating the use of stack traces and
server logs to aid the process of uncovering endpoints and
generating sequence diagrams from runtime information. We
are also devising approaches to uncover actor types (e.g., User
vs Admin) and relationships (between use cases, and actors).

ACKNOWLEDGMENTS

This work was partially funded by the US National Science
Foundation under grant numbers CNS-1816845 and CNS-
1823246.

REFERENCES

[1] N. Alshuqayran, N. Ali, and R. Evans. Towards micro service architec-
ture recovery: An empirical study. In 2018 International Conference on
Software Architecture (ICSA), pages 47–4709. IEEE, 2018.

[2] D. Chen and C. Manning. A fast and accurate dependency parser using
neural networks. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 740–750,
2014.

[3] M.-C. De Marneffe, T. Grenager, B. MacCartney, D. Cer, D. Ramage,
C. Kiddon, and C. D. Manning. Aligning semantic graphs for textual
inference and machine reading. In Proceedings of the AAAI Spring
Symposium, pages 468–476, 2007.

[4] J. Garcia, I. Ivkovic, and N. Medvidovic. A comparative analysis of
software architecture recovery techniques. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing, pages 486–496. IEEE Press, 2013.

[5] D. Grove and C. Chambers. A framework for call graph construction
algorithms. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(6):685–746, 2001.

[6] D. R. Harris, A. S. Yeh, and H. B. Reubenstein. Extracting architectural
features from source code. Automated Software Engineering, 3(1-
2):109–138, 1996.

[7] V. Jakobac, N. Medvidovic, and A. Egyed. Separating architectural
concerns to ease program understanding. ACM SIGSOFT Software
Engineering Notes, 30(4):1–5, 2005.

[8] P. Kruchten. Architectural blueprints–the 4+ 1 view model of software
architecture, software, vol. 12, number 6, 1995.

[9] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky. The Stanford CoreNLP natural language processing
toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations, pages 55–60, 2014.

[10] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar. A tactic
centric approach for automating traceability of quality concerns. In
International Conference on Software Engineering, ICSE (1), 2012.

[11] T. Richner and S. Ducasse. Recovering high-level views of object-
oriented applications from static and dynamic information. In Pro-
ceedings IEEE International Conference on Software Maintenance-
1999 (ICSM’99).’Software Maintenance for Business Change’(Cat. No.
99CB36360), pages 13–22. IEEE, 1999.

[12] B. R. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan. Discov-
ering architectures from running systems. IEEE Trans. Software Eng.,
32(7):454–466, 2006.

[13] M. Shtern and V. Tzerpos. Clustering methodologies for software
engineering. Adv. Soft. Eng., 2012, Jan. 2012.

[14] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav. Alias anal-
ysis for object-oriented programs. In Aliasing in Object-Oriented Pro-
gramming. Types, Analysis and Verification, pages 196–232. Springer,
2013.

[15] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-
of-speech tagging with a cyclic dependency network. In Proceedings of
the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology-Volume
1, pages 173–180. Association for computational Linguistics, 2003.

[16] Xinyi Dong and M. W. Godfrey. A hybrid program model for object-
oriented reverse engineering. In 15th IEEE International Conference on
Program Comprehension (ICPC ’07), pages 81–90, June 2007.


