
A Model-Driven Solution for Automatic
Software Deployment in the Cloud

Franklin Magalhães Ribeiro Junior1, Tarćısio da Rocha2, Joanna C. S.
Santos3??, and Edward David Moreno2

1 Universidade do Tocantins (Unitins), Palmas, TO, Brazil,
franklin.mr3@gmail.com

2 Departamento de Computação, Universidade Federal de Sergipe, São Cristóvão,
SE, Brazil

3 Department of Software Engineering, Rochester Institute of Technology, Rochester,
NY, USA

Abstract. Through virtualization, cloud computing offers resources that
reduce the costs in the institutions that use hardware and software re-
sources. In this paper, we present a model-based approach to automat-
ically deploy software in the cloud. To evaluate our approach, we con-
ducted an experiment in an IT company in which their software develop-
ers used our solution instead of manually deploying software in the cloud.
After that, they answered a survey, so we could investigate the following
metrics: maintainability, learnability and reduction of developer’s work-
load to deploy software services. The results showed that our solution
presented a positive impact of at least of 25% percent for all the metrics.
Moreover, since our approach relies upon UML models, it requires less
effort to deploy the services as well as it can be used by any professionals
that have basic skills about UML.

Keywords: cloud computing; automatic software deployment; model-
driven deployment; UML

1 Introduction

The resources offered by cloud computing decrease the costs associated with high
data processing demands [13]. Cloud resources have been applied in many fields
of knowledge (such as as astronomy, genetics and chemistry) that use exhaustive
search algorithms to decode certain structure types [4]. Through virtualization,
which abstracts the cloud physical layer in order to offer hardware resources
according to demands, cloud computing also has an approach based on Software
as a Service (SaaS) [18]. In this approach, clients can request a software service
in the cloud provider, which was deployed by the provider itself, or deploy their
own service in the cloud [16].

Since cloud environments have their own software architecture, the deploy-
ment of a software system in the cloud requires the reconstruction of many

?? The author is sponsored by CAPES Brazil to pursue a MS at RIT



2

existing requirements [4]. Moreover, in environments in which the software de-
ployment in the cloud is costly, introducing the automatic deployment of services
and applications would reduce the developer’s workload and, as such, it brings
advantages.

Thus, in this work we developed and analyzed a model-driven solution to
automatically deploy software in the cloud. This solution allows not only software
developers, but anyone who has basic skills in UML (Unified Modeling Language)
[15], to deploy software in the cloud with a high-level abstraction.

This paper is organized as follows: in Section 2 we explain the requirements
needed to be addressed when deploying software in the cloud; in Section 3 we
discuss the related work; in Section 4 we elaborate on our proposed solution; in
Section 5 we explain the solution’s architecture; in Section 6 we show the results
we obtained by applying the solution into an IT company; lastly, in Section 7,
we make our final considerations about this work.

2 Deploying Software in the Cloud

For a software to properly execute in a cloud architecture, it is required to deploy
not only the software itself but also its dependencies (i. e., other services that the
software depends on when it is running) [8, 18]. To fulfill this requirement, each
developer, who needs to deploy an application in the cloud, has to acquire an
access key to the cloud provider, select a machine instance in the provider that
supports the application as well as configure and install the virtual machine.
After that, the developer needs to deploy the application and its dependencies
(in a proper order) in the selected virtual machine [2, 4].

A more efficient way to deploy software in the cloud environment is through
automating that process, since the configuration details could be abstracted at
a higher level thereby decreasing the human efforts to perform it. Another ad-
vantage of the automatic deployment of software in the cloud is the elimination
of manual tasks which are prone to error such as: software stack configuration,
authentication between virtual machines, specification of dependencies between
service components and between services, definition of temporal and spatial de-
pendencies and, lastly, analysis of the resources in the cloud environment in
order to identify whether the node fulfills the minimum requirements of the
service [11].

3 Related Work

After an extensive investigation of the current state-of-art of approaches for
automatic software deployment in the cloud, we selected some of them to describe
and analyze. For example, the solutions presented in Vega [6], Wrangler [10] and
Disnix [3] used manual codification through scripts, which required more time
to deploy the software. Besides that, according to [19] and Fazziki et. al. [9]
the disadvantage of such deployment approach is that it increases the costs
associated with the codification and human efforts.



3

We also noted that D&C Based [4], SDO [12] and User-Level Deployment [20]
automated the deployment of services in the cloud with the use of programming
languages. Comparing to the approaches presented in Vega [6], Wrangler [10]
and Disnix [3], those approaches are more advantageous in terms of the time
effort in the deployment process.

In addition, Virtual Models [11] and Disnix [3] presented semi-automated
mechanisms for deployment. In other words, these approaches still require that
certain steps are performed manually during the deployment process.

The solution proposed by Ardagna et. al. [1] presented an approach partially
models oriented and semi-automated for software deployment. It requires some
level of comprehension from the final user about the details of the cloud structure
and a heavy information load in the models for deployment demanded to the
user.

The solution presented in this work is based on models for deploying software
in the cloud automatically. Our solution only requires the developer to have
knowledge about the access key and service provider name, since the specific
details are abstracted. The goal is to deploy the software at a higher level of
abstraction in order to reduce the human efforts and the time spent in performing
the deployment tasks, since the model-based approach is a better way to increase
the developer’s productivity [9].

4 Proposed Solution

This section explains how the deployment models were defined and adapted to
our solution as well as the solution’s architecture.

4.1 Solution Workflow

This solution proposes that the developers have the services they need to deploy
as well as to create the software deployment UML models. These models de-
fine all the information required for the deployment (virtual machines, services,
applications, dependencies, operating systems of the virtual machines, services
repositories and virtual machines, databases, services provider and access key)
as parameters without the need of coding of the configuration of any virtual
machine.

After the creation and definition of the models with their respective input
parameters, the developer provides them as an input of the system. This triggers
an automatic deployment, which encompasses four steps: two for interpreting the
UML models, one for creating the software stack and another for automatically
generating code. Regarding the steps related to UML models interpretation, the
first one is about interpreting a specific model (which contains the elements
related to the cloud provider as well as the repository) and the second one is the
interpretation of the general model (that has the elements for specifying virtual
machines, operating system, services, databases, dependencies and applications).



4

The software stack is defined as the stack of dependencies between services, which
were discovered in the interpreting phase of the general model.

Hence, firstly, the system interprets the general model by collecting data
within a file which has a format similar to XML and contains the information
specified by the developer in the model. During this collecting process, the sys-
tem instantiates a list of objects of virtual machines, dependencies, operating
systems and services. Subsequently, during the software stack creation step, the
system binds the services to the corresponding virtual machines. After that, it
individually associates the dependencies with the services in each virtual ma-
chine. When these two steps are completed and all data about virtual machines
and services were collected, then the step of interpreting of specific models is
started. In this step, an XML-like file (.uml format) is read in order to collect
data and, finally, automatically generate the code to deploy the software in the
cloud.

4.2 Deployment Models Definition

The solution has two UML deployment diagrams as inputs: the general model
(which is independent of a cloud service provider) and the specific model (which
has the particular aspects related to the cloud infrastructure). Figures 1a and
1b shows examples of the general model and specific model, respectively. In the
example model shown in Fig. 1a there are all the necessary features (services,
dependencies between services, operating system, virtual machine, application,
databases and optional fields for each service, such as service version, the service
directory, etc.) for the software deployment independent of the cloud provider.
The features exposed in these general models are used by the specific model
(Fig. 1b) to collect the necessary information for the effective implementation of
the software in the cloud, such as: access key, virtual machine service repository
and the VM instance in the cloud.

Therefore, for an effective modeling of the specific model, developers need
to create the general model first, since the specific model needs the information
of the virtual machine. Such relationship between the specific and the general
model can be noticed in the example shown in Fig. 1b in which the Virtual
Machine node corresponds to the same node represented in the example shown
in Fig. 1a.

When designing a practical solution to be applied on a large scale environ-
ment (with multiple VMs), considering that the developer needs the deployment
of multiple applications, the use of models can decrease the work effort to deploy
software by reducing coding tasks and increasing the deployment productivity.
Hence, our solution allows the creation of multiple VM nodes in the solution
model (providing scalability).

5 Solution Architecture

The implementation of the proposed architecture is divided into three views:
system, local and remote. This solution is composed of five modules: Controller,



5

(a) (b)

Fig. 1. (a) General model. (b) Specific model

Associator, Stacker, Allocator and Deployment. The Fig. 2a shows the three
views of the proposed system architecture for model-based software deployment
in the cloud (i) System: showing the five modules of the system, (ii) Location:
corresponding to the user’s view (which uses the UML deployment diagrams as
inputs) and (iii) Remote: it includes the creation of a Chef [5] server instance
in the cloud and the final stage of deployment, corresponding to the software
installation in the cloud.

5.1 Controller Module

The controller module manages the four other modules, acting as an intermedi-
ary in the communication between them. It is responsible for (i) sending a list
of services obtained from the Associator to the Stacker and a list of dependency
relationships between services (software stack) from the Stacker to the Deploy-
ment Module, (ii) enabling communication of the Allocator with the cloud, (iii)
notifying the Allocator upon the server instance creation in the cloud, (iv) in-
forming to the Deployment Module which operating system must be installed on
the VM, (v) reporting to the Deployment Module which software stack should
be allocated to the respective VM and (vi) managing the order of information
transmission between the modules and the tasks performed.

5.2 Associator Module

The Associator Module is responsible for interpreting the data within UML
models. Its execution routine is divided into two stages: (i) the General Model
interpretation and (ii) interpretation of the Specific Model, in which the in-
put files (metadata from UML models) are read line by line at each stage. For
each line read in the file, the algorithm within this module searches for the



6

(a) (b)

Fig. 2. (a) Software deployment solution architecture. (b) Example of identifying the
attributes of a model

substring “OwnedViews”, which can refer to either a UML component with
the “artifact” type (service), or a node (VM), or an association or dependency.
When the searched substring is found, the method search for another substring
in the same line of the file which can be: (i) “UMLNodeView” (represents a
node), (ii) “UMLArtifactView” (representing an artifact), (iii) “UMLAssocia-
tionView”(indicating an association and used in the interpretation of the spe-
cific model) and (iv) “UMLDependencyView” (representing a dependency). Fig.
2b shows an example of this metadata. Once the attributes related to the UML
components are collected, the algorithm instantiates objects with their attributes
(GUID, types, and coordinates) and creates lists of these objects for each type of
UML component (such as list of node objects, virtual machines, cloud providers,
instance machine, services, operating systems and attributes of services).

5.3 Stacker Module

To define the software stack and specify the services belonging to their respec-
tive virtual machines, we developed the Stacker module. This Stacker is divided
into three steps. In the first step, we establish the dependencies to the services
through the two lists of objects obtained from the Associator module. The al-
gorithm of this module then scans the entire list of objects for each dependency
artifact (service). For example, when the “guid” identifier (see Fig. 2b) of the
service object with an x index from the list is the same as the head attribute
identifier of an object (dependence) in the dependency list, an array of attributes
of the service x will receive the attribute tail of the object dependency. With
that, the x service will get the service it depends upon to run. The reverse steps
of this process are performed for obtaining the identifier, e.g., a parent service



7

which depends on a child service, which stores the GUID (id) of the parent
service in a variable named previous (used later to set up the software stack).

In the second step we establish the relationship between the services and
virtual machines. To do so, we implemented a method that scans a list of virtual
machines (nodes) for each service (device). For each service, it is verified if the
service is part of the VM node envelope (if the X and Y coordinates of the service
are contained in the envelope of the node).

After the second step, each virtual machine will have a list of services with
their dependencies, but unordered. Thus, in the third step we create each soft-
ware stack for each virtual machine. For that, we developed an algorithm based
on a topological sorting algorithm that sorts a graph [7]. Our algorithm creates
a graph whose nodes of this data structure are the services objects, in which
there is a variable named previous for each service that contains the value of
the identifier (ID) of the parent service. With these variables that indicate the
respective parent and child services, it is possible to assemble the software stack
for each VM (when the graph is mounted, the software stack is ready) by doing
a topological sort.

5.4 Allocator Module

The Allocator module performs the allocation of cloud provider(s) into virtual
machines and the establishment of machine instances (machine image) in the
cloud with the virtual machines that should be deployed. This allocation will
make it possible to perform deployment later.

5.5 Deployment Module

In this module, two output files are automatically generated for each virtual ma-
chine modeled by the developer in the General and Specific Model. The first file
corresponds to a deployment script containing the executable code for deploy-
ment. The second one has the application rules and services. The code generated
for the deployment was written by the Deployment Module in Ruby language
and follow the standards of the Chef platform [5].

We implemented the generation of the deployment executable file in five
parts: (i) the creation of the deployment file, (ii) the file header generation,
containing the path of the services’ settings (“cookbooks”), (iii) the creation of
names and definitions of services and the application, (iv) a call to the rules of
services and application (which are defined in another file that will be generated
by the module) and (v) the executable code deployment, which is comprised of
the cloud specification, image VM, operating system, software stack and appli-
cation.

The generation of the application rules was also implemented in five parts:
(i) the creation of the related to the rules of the services, (ii) the file header,
consisting of the application name and an indicator that it represents the rules,
(iii) the file body with the application name, the repository of the application
and services, access key to the cloud provider and the application database ’url’,



8

(iv) optionally, the services’ rules containing, for example, the version, port, host,
user and password of each service and (v) the classification of each service and
the applications that will run on the virtual machine, in the order they are in
the software stack.

6 Experiment

We conducted an experiment to evaluate our solution with respect to usabil-
ity, learnability and the efforts to deploy software in the cloud, according to
the point view of developers of software services from industry. To do so, we
asked developers from an IT company to deploy an e-commerce software. Thus,
these developers created models (General and Specific ones) containing all the
necessary requirements for the application deployment.

6.1 Metrics

In this experiment, we defined objective assessment metrics, since evaluating
software in this scope is subjective. Among the software evaluation metrics found
in Nielsen [14] and Santos [17], we selected for this study: (i) Learnability (ease
of learning), (ii) Workload and (iii) Maintainability.

6.2 Preparation and Experiment Execution

We asked the participants to deploy a software service in the Amazon Web
Services (AWS) cloud provider using the software solution developed in this
research. The participants were trained on how to use the model-based solution
on performing the assigned task. Moreover, they were told that they would
use StarUML as an auxiliary tool to design the General and Specific models.
After completing the deployment assigned task, participants filled a survey. This
survey aimed to collect data related to the metrics previously mentioned with
answers in a Likert scale ranging from 1 (totally agree) to 5 (totally disagree).

6.3 Results and Analysis

After performing the experiment, we collected and analyzed the data. For each
metric, we obtained the values shown in Fig. 3a. As shown in this figure, we
observed that all the average metric values of learnability, workload reduction
on large and small deployment scales and maintainability capacity were higher
for those that used the solution. It means that there was a positive impact
with the use of the solution proposed by this research. Fig. 3b shows a graph
that contains the percentage difference of the weights assigned by the average
of each participant, regarding the use and non-use of the model-based solution
for software deployment in the cloud. We observed that there was a positive
impact in the participants of 30% with respect to each metric of maintainability,
learnability and reduced workload in small scale of deployment. Regarding the
workload reduction for large-scale implementation, the perceived positive effect
was 25%.



9

(a) (b)

Fig. 3. (a) Metrics average with/without using our solution. (b) Impact on metrics
related to the usage of the solution

7 Conclusion

This research presented a model-based approach for automating software de-
ployment in the cloud by using UML models. Our main goal was to reduce the
workload for developers and researchers who need to use cloud resources. To
evaluate our solution, we conducted an experiment involving a real usage in an
IT company. As a result of the experiment, we noticed that there was a reduction
in the average workload of up to 25% for developers, apart from the positive im-
pact of 30% increase in learnability metrics and maintainability of the software
deployment solution. As a future work, we aim to develop a custom graphical
user interface (GUI) for the design of specific UML models to the cloud in order
to make modeling even easier for the user and to overcome the results obtained
in this research regarding learnability. We also expect to investigate a way to al-
low the solution to automatically deploy in the same virtual machine in multiple
cloud providers using the same model, including hybrid clouds.

References

1. Ardagna, D., Di Nitto, E., Casale, G., Petcu, D., Mohagheghi, P., Mosser, S.,
Matthews, P., Gericke, A., Ballagny, C., D’Andria, F., et al.: Modaclouds: A model-
driven approach for the design and execution of applications on multiple clouds.
In: Proceedings of the 4th International Workshop on Modeling in Software Engi-
neering. pp. 50–56. IEEE Press (2012)

2. Armstrong, D., Djemame, K., Nair, S., Tordsson, J., Ziegler, W.: Towards a contex-
tualization solution for cloud platform services. In: Cloud Computing Technology
and Science (CloudCom), 2011 IEEE Third International Conference on. pp. 328–
331. IEEE (2011)

3. Van der Burg, S., De Jonge, M., Dolstra, E., Visser, E.: Software deployment in a
dynamic cloud: From device to service orientation in a hospital environment. In:
Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of
Cloud Computing. pp. 61–66. IEEE Computer Society (2009)



10

4. Ca la, J., Watson, P.: Automatic software deployment in the azure cloud. In: Dis-
tributed Applications and Interoperable Systems. pp. 155–168. Springer (2010)

5. Chef Software, I.: Chef - code can. https://www.chef.io/, (Visited on 01/06/2016)
6. Chieu, T., Karve, A., Mohindra, A., Segal, A.: Simplifying solution deployment

on a cloud through composite appliances. In: Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on.
pp. 1–5. IEEE (2010)

7. Cormen, T.H.: Introduction to algorithms. MIT press (2009)
8. Dudin, E., Smetanin, Y.G.: A review of cloud computing. Scientific and Technical

Information Processing 38(4), 280–284 (2011)
9. Fazziki, A.E., Lakhrissi, H., Yetognon, K., Sadgal, M.: A service oriented informa-

tion system: a model driven approach. In: Signal Image Technology and Internet
Based Systems (SITIS), 2012 Eighth International Conference on. pp. 466–473.
IEEE (2012)

10. Juve, G., Deelman, E.: Automating application deployment in infrastructure
clouds. In: Cloud Computing Technology and Science (CloudCom), 2011 IEEE
Third International Conference on. pp. 658–665. IEEE (2011)

11. Konstantinou, A.V., Eilam, T., Kalantar, M., Totok, A.A., Arnold, W., Snible,
E.: An architecture for virtual solution composition and deployment in infrastruc-
ture clouds. In: Proceedings of the 3rd international workshop on Virtualization
technologies in distributed computing. pp. 9–18. ACM (2009)

12. Li, W., Svard, P., Tordsson, J., Elmroth, E.: A general approach to service deploy-
ment in cloud environments. In: Cloud and Green Computing (CGC), 2012 Second
International Conference on. pp. 17–24. IEEE (2012)

13. Muthunagai, S., Karthic, C., Sujatha, S.: Efficient access of cloud resources through
virtualization techniques. In: Recent Trends In Information Technology (ICRTIT),
2012 International Conference on. pp. 174–178. IEEE (2012)

14. Nielsen, J.: Usability engineering. Elsevier (1994)
15. OMG: Uml 2.4.1. http://www.omg.org/spec/UML/2.4.1/, (Visited on

01/06/2016)
16. Salapura, V.: Cloud computing: Virtualization and resiliency for data center com-

puting. In: Computer Design (ICCD), 2012 IEEE 30th International Conference
on. pp. 1–2. IEEE (2012)

17. Santos, R.C.: Revisão das métricas para avaliação de usabilidade de sistemas (re-
view of the metrics for evaluating the usability of systems). In: Congresso Interna-
cional GBATA (2008)

18. Savu, L.: Cloud computing: Deployment models, delivery models, risks and research
challenges. In: 2011 International Conference on Computer and Management (CA-
MAN) (2011)

19. Talwar, V., Milojicic, D., Wu, Q., Pu, C., Yan, W., Jung, G.P.: Approaches for
service deployment. Internet Computing, IEEE 9(2), 70–80 (2005)

20. Zhang, Y., Li, Y., Zheng, W.: Automatic software deployment using user-level
virtualization for cloud-computing. Future Generation Computer Systems 29(1),
323–329 (2013)


