On the Performance of Large Language Models
on Introductory Programming Assignments

Nishat Raihan'”, Dhiman Goswami’,
Sadiya Sayara Chowdhury Puspo!, Mohammed Latif Siddiq?,
Christian Newman?, Tharindu Ranasinghe?,
Joanna C. S. Santos?, Marcos Zampieri'

LGeorge Mason University, Fairfax, VA, USA.
2University of Notre Dame, Notre Dame, IN, USA.
3Rochester Institute of Technology, Rochester, NY, USA.
4Lancaster University, Lancaster, UK.

*Corresponding author(s). E-mail(s): mraihan2@gmu.edu;

Abstract

Recent advances in artificial intelligence (AI), machine learning (ML), and natu-
ral language processing (NLP) have led to the development of a new generation
of Large Language Models (LLMs) trained on massive amounts of data. Com-
mercial applications (e.g., ChatGPT) have made this available to the general
public, enabling the use of LLMs to produce high-quality texts for academic
and professional purposes. Educational institutions are increasingly aware of stu-
dents’ use of Al-generated content and are researching its impact and potential
misuse. Computer Science (CS) and related fields are particularly affected, as
LLMs can also generate programming code in various languages. To understand
the potential impact of publicly available LLMs in CS education, we extend our
previously introduced CSEPrompts [31], a framework comprising hundreds of pro-
gramming exercise prompts and multiple-choice questions from introductory CS
and programming courses. We provide experimental results on CSEPrompts, eval-
uating the performance of several LLMs in generating Python code and answering
basic computer science and programming questions, offering insights into the
implications of this technology for CS education.

Keywords: Benchmark Dataset, Code LLM, Prompting

1 Introduction

The past decade has witnessed a remarkable evolution in natural language processing
(NLP) models. We have progressed from n-gram and word embedding models, such as
word2vec [25] and GloVe [28], to sophisticated context-aware models like ELMo [29],
and BERT [7]. These advancements have significantly enhanced performance across
various NLP tasks [35]. More recently, Large Language Models (LLMs) such as GPT
[1, 21] have further revolutionized the field.

Recent studies explored the use of LLMs for assessment in various domains, such as
law [17], mathematics and computer science [48], medicine [14], and computer science
education [34]. These studies demonstrate the high quality of the output of these
models, with some even suggesting that these models could “pass the bar exam”[17].
Such findings underscore the potential impact of LLMs on educational assessment and
the need for further research.

The impact of GPT models on education remains a key subject of several recent
studies, which include studies conducted by Halaweh [13], Lo [21], Raihan et al.
[32], Sok and Heng [39], among others. While these models offer numerous opportuni-
ties in educational technology, such as enhanced writing assistants, intelligent tutoring
systems, and automatic assessment tools, they also raise concerns about potential mis-
use, particularly in coding tasks. Savelka et al. [37] find that while GPT scores may
not meet course completion criteria, the model exhibits notable capabilities, includ-
ing the ability to correct solutions based on auto-grader feedback. This capability
raises concerns about students potentially exploiting this technology to generate com-
plete essays and programming assignments, thereby artificially inflating their grades.
Furthermore, Surameery and Shakor [40] demonstrate that ChatGPT excels in debug-
ging, bug prediction, and explanation, although it has limitations in reasoning and
integration.

In this paper, we build upon our original CSEPrompts benchmark [31] to introduce
CSEPrompts 2.0. This extension encompasses four key areas:

1. An increased number of multiple-choice question (MCQ) prompts,
2. Evaluations of newer and more recent models,

3. A thorough statistical analysis on model performances, and

4

. A detailed error analysis.

We present a comprehensive evaluation that goes beyond GPT, examining the
performance of eight models capable of generating both English text and Python code
on introductory CS and programming course assignments. To facilitate reproducibility
and ensure further research in this area, we develop CSEPrompts 2.0 as a robust
framework containing 219 programming prompts and 100 MCQs that were carefully
collected from coding websites and massive open online courses (MOOCs). This diverse
set of prompts allows for a thorough assessment of LLLM capabilities in the context of
CS education.

In this study, we do not observe a significant difference in performance after adding
the new prompts introduced in this extension. Although the expanded MCQ pool does

not substantially change the relative ranking of models, the consistently narrow accu-
racy range indicates a potential ceiling effect for current introductory-level MCQs.
This observation has two implications: (i) when the evaluation target is limited to sim-
ilar entry-level questions, practitioners may choose among top models based on factors
such as cost or latency rather than marginal accuracy gains, and (ii) future dataset
construction should incorporate MCQs that demand deeper conceptual reasoning and
multi-step distractor analysis to meaningfully differentiate model understanding.
Our investigation addresses the following research questions:

RQ1: How well do state-of-the-art LLMs perform on introductory CS assignments
compared to existing benchmarks?

RQ2: Is there a significant difference in the performance of LLMs when completing
assignments from coding websites compared to academic MOOCs?

RQ3: Are state-of-the-art LLMs better at generating code or answering MCQs?

RQ4: Are Code LLMs better at generating code and/or answering MCQs than raw
LLMSs?

We aim to provide key insights into the capabilities and limitations of LLMs in CS
education, informing both educators and researchers about the potential implications
of these powerful tools in academic settings.

2 Related Work
2.1 Code Generation Models

Early automated code generation methods concentrated on inferring user intent from
high-level specifications or input-output examples [10, 11, 24]. These methods convert
task specifications into constraints, and a program is generated once it demonstrates
compliance with those constraints [11]. With the advent of attention-based transformer
models [42], code generation has evolved into a sequence-to-sequence task, where user
intent is expressed through natural language. Most coding tasks involved code com-
pletion, code infilling, comment generation, and similar tasks that were often handled
using encoder-only models like BERT [7]. Models such as CodeBERT [9], Graph-
CodeBERT [12], and SynCoBERT [44] are pre-trained on text-code pairs, including
Abstract Syntax Trees (ASTs) and Control Flow Graphs (CFGs) to capture syntac-
tic and semantic code structures. However, encoder-only models are not primarily
designed for generative tasks and exhibit subpar performance in code generation [44].

The emergence of generative models based on encoder-decoder architectures, such
as CodeT5 [45], and decoder-only architectures, like CodeGen [26], CodeLLaMA [36],
StarCoder [19], and domain specific models like Mojo-Coder [33] has significantly
improved code generation capabilities. Zan et al. [47] conduct a comprehensive survey,
highlighting the superior performance of these models in code generation tasks. With
these advancements, the need for unified benchmarks to evaluate and compare code
generation models has become more pronounced.

2.2 Code Generation Benchmarks

Several benchmarks have been introduced to assess the performance of code gen-
eration models. HumanEval, introduced alongside OpenAT’s Codex model [5], and
MBPP (Mostly Basic Python Problems) [2] are among the most widely used. These
datasets contain coding prompts paired with human-generated solutions and three
test cases for each task. Other benchmarks include CONCODE [15], and extensions
like HumanEval+ [20], and mHumanEval [30].

Recently, Large Language Models (LLMs) like GPT-3 [4], GPT-4 [1], and fine-
tuned code models like CodeLLaMA [36] and StarCoder [19] have demonstrated
remarkable code generation abilities. These models are evaluated on benchmarks like
HumanEval and MBPP, consistently outperforming previous models. For instance,
Rorziere et al. Roziere et al. [36] show that CodeLLaMA achieves state-of-the-art results
on HumanEval, demonstrating the effectiveness of decoder-only architectures for code
generation. Siddiq et al. [38] analyzed these benchmark datasets and found several
quality issues, such as insufficient contextual information.

In addition to code generation, other related tasks, such as code completion, which
involves predicting the next token or sequence of tokens in code, have been extensively
explored. Models like GPT-J [43], GPT-NeoX [3], and PaLM-Coder [6] are applied
to code completion tasks using prompts longer than one sentence. Svyatkovskiy et al.
[41] introduce IntelliCode Compose, a transformer-based model for real-time code
completion, emphasizing the importance of handling multi-line code completions.

Despite these advancements, existing datasets and benchmarks primarily focus on
general-purpose coding tasks relevant to software development but do not adequately
address educational coding tasks. Educational coding tasks often require a deep
understanding of specific programming language syntax and semantics, evaluating the
learner’s comprehension of fundamental concepts. These tasks differ significantly from
the prompts included in existing benchmarks.

To bridge this gap, we introduce CSEPrompts 2.0, an extension of our previ-
ous work [31]. Our framework provides diverse programming exercise prompts and
multiple-choice questions retrieved from introductory CS and programming courses.
Each programming prompt is paired with five test cases, compared to three in most
benchmarks, offering a more rigorous evaluation of code correctness.

While significant progress has been made in code generation and related tasks using
LLMs, benchmarks focusing on educational coding tasks remain needed. CSEPrompts
2.0 addresses this need by providing a comprehensive framework for evaluating LLMs
on introductory CS assignments, thereby contributing to the understanding of LLMs’
potential in educational contexts.

3 CSEPrompts 2.0

We introduce CSEPrompts 2.0!, an enhanced evaluation framework that extends the
original CSEPrompts dataset. The key features are as follows:
¢ Retained from the original CSEPrompts:
— 219 programming prompts (118 from coding websites and 101 from MOOCs)

Thttps://github.com/mraihan-gmu/CSEPrompts

https://github.com/mraihan-gmu/CSEPrompts

— Comprehensive test cases for each programming prompt

— Coverage of topics ranging from basic syntax and control structures to
complex algorithmic problems

e New in CSEPrompts 2.0:

— Doubling the multiple-choice questions from 50 to 100, resulting in a total of
319 exercise prompts (see Table 1)

— A broader range of challenges and assessment formats designed to better
evaluate theoretical understanding and practical knowledge

3.1 Data Sources

The prompts are collected from a diverse set of online resources. All twelve of them
are listed in Appendix A with their respective website links.

Coding Websites

We curated our dataset of introductory Python exercises from five leading coding plat-
forms—CodingBat, LearnPython, Edabit, Python Principles, and HackerRank—using
a detailed set of inclusion and exclusion criteria designed to ensure methodologi-
cal transparency and replicability. Inclusion required that each exercise present a
well-defined problem statement with clear input/output specifications and a focus
on core programming constructs, while being self-contained. In contrast, exercises
were excluded if they involved additional complexities, such as File I/O operations or
Command-Prompt/Terminal interactions, given the limitations of Language Learning
Models (LLMs). As shown in Table 1, this rigorous selection process yielded a final
dataset of 118 carefully curated prompts. This methodological framework is similarly
tailored for other source categories, ensuring that future extensions or applications to
different contexts remain replicable.

Table 1: Summary of Coding Prompts [MCQs: v2.0 (v1.0)].

Coding Websites MOOCs - Coding Prompts MOOCs - MCQs

Platform Prompts | University Course Prompts | University —Course Prompts

CodingBat 24 Harvard CS50 29 GT CS1301xI 20 (20)

LearnPython 16 UMich PforE 7 GT CS1301xIT 20 (8)

Edabit 29 GT CS1301xI 11 GT CS1301xI1I 16 (6)

Python Principles 26 GT CS1301xII 20 GT CS1301xIV 16 (16)

HackerRank 23 GT CS1301xI1I 17 Meta Programming in Python 28 (—)
Total 118 Total 101 Total 100 (50)

MOOCs

The framework also preserves the 101 programming prompts drawn from MOOCs
offered by Harvard University, the University of Michigan, and the Georgia Insti-
tute of Technology. In contrast, the multiple-choice questions have been significantly
expanded. In the original CSEPrompts, 50 MCQs were included (all from GT courses).
In CSEPrompts 2.0, the number of MCQs has been increased to 100. This update
is achieved by revising the counts for existing courses (for example, GT’s CS1301xII

increased from 8 to 20 and CS1301xIII from 6 to 16) and by adding a new source,
Meta’s Programming in Python (see Table 1). These changes provide a more balanced
assessment of programming theory and practice.

3.2 Dataset Statistics

The prompts from coding sites are generally shorter than those from MOOCs, as shown
in Table 2. For each prompt, we collect a minimum of 5 test cases, primarily from the
source platforms. When necessary, we supplement with additional test cases generated
using Pynguin [22], an open-source unit test generator for Python. To ensure the
quality and relevance of Pynguin-generated tests, we manually review them, focusing
on edge cases and comprehensive code coverage. For MCQs, we obtain correct answers
from the original platforms. We collect LLM-generated responses for each prompt,
manually clean them to isolate code snippets, and label them based on the number
of passed test cases. We present a few prompts for each subset of CSEPrompts 2.0 in
Appendix B.

Table 2: Statistics for Prompts [MCQs: v2.0 (v1.0)]

Metric CodingSites | Academic MCQ
Total Prompts 118 101 100 (50)
Max. No. of Tokens 101 372 221 (199)
Min. No. of Tokens 5 17 15 (7)
Mean No. of Tokens 28 158 106 (95)
Standard Deviation 16 72 51 (47)

3.3 Data Collection Strategy

Our dataset is built from real programming assignments sourced from academic
courses and coding websites. Unlike benchmarks such as HumanEval [? | or MBPP
[2], which are designed solely to test code generation, our approach reflects the actual
challenges encountered in classroom settings.

In the original version, we manually collected coding prompts, ensuring that no
duplicates were included and maintained strict inclusion-and-exclusion criteria for the
coding prompts only (see Appendix C, Table C2). For the second version (2.0), we
compile a new set of criteria applicable for MCQ prompts as we have expanded the
dataset by adding multiple-choice question (MCQ) prompts.

This extension was carried out with the following considerations:

e Expanded Scope: Although the coding prompts are unchanged, the addition
of MCQ prompts broadens the dataset to better capture the range of academic
questions students face.

e Selective Completeness: The current 2.0 extraction represents all the qualified
MCQ prompts (see Appendix C, Table C3) from the selected sources at the time
of this report.

e Manual Verification: As with the original data collection, all prompts were
manually reviewed to ensure no duplication and to maintain quality.

This extension focuses on increasing the breadth of the dataset, and by including
a more diverse set of academic prompts, we provide a dataset that more accurately
reflects the challenges encountered in computer science education, especially with
MCQ prompts that are underexplored in the domain.

4 Experiments

4.1 Large Langauge Models (LLMs)

We experiment with eight different LLMs that represent diverse architectural designs
and implementations. Our selection is based on their exceptional performance across
established leaderboards maintained by respected research communities: the EvalPlus
LeaderBoard [20], AllenAI’s WildBench? and HuggingFace’s BigCode LLM?.

Table 3: Models evaluated on CSEPrompts 2.0

Model Open/Close | Parameters | Version | Ref
GPT-40 Closed - 4.0 [27]
GPT3.5 Closed - 3.5 (1]

Llama-3 Open 8B 3.1 8]

Mistral Open 7B 0.1 [16]
Code-Llama Open 13B 1.0 [36]
StarCoder Open 7B 2.0 [19]
MagiCoder Open 7B S-DS-6 [46]
WizardCoder Open 15B 1.0 (23]

In evaluating CSEPrompts 2.0, we examine a diverse range of language models,
including proprietary systems from OpenAl, open-source base models, and specialized
systems fine-tuned for code generation. This selection, which highlights different archi-
tectures and optimization strategies, enables us to assess both general NLP capabilities
and targeted programming performance. Table 3 provides a summary of each model’s
key attributes, such as openness, parameter details, version, and relevant references.

4.2 Code Generation

We prepare prompts and test each model on tasks from CSEPrompts 2.0. Figure 1
and 2 show the simple prompt format used for the models. The generated responses,
including code, pseudo-code, and explanations, are manually cleaned to isolate the
code. We then evaluate these codes using pytest*, which enables efficient creation of
readable Python unit tests.

4.3 Evaluation Metric

In our work, we employ the pass@l metric, a variant of pass@k [5]. Pass@k metric
evaluates the probability that at least one out of k generated samples are functionally

Zhttps://huggingface.co/spaces/allenai/WildBench
3https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
4docs.pytest.org/en/7.4.x/

https://huggingface.co/spaces/allenai/WildBench
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
docs.pytest.org/en/7.4.x/

“You are a helpful AI assistant. You are given the following problem: ’

Write a function named capital indexes. The function takes a sin-
gle parameter, which is a string. Your function should return
a list of all the indexes in the string that have capital letters.

‘Please write a Python code snippet to solve the problem. Thanks.’

. J
Fig. 1: Sample Prompt for Coding Tasks; includes 3 parts - a system prompt, the
task description, and the instruction.

[‘You are a helpful AI assistant. You are given a Multiple Choice Question. ’ j

(False and True) or (False or True)
Is this statement resolved to True or False?

® True
® False
® Statement will not compile

[‘You need to pick one or multiple correct answers from the given ones. Thanks.’ j

Fig. 2: Sample Prompt for MCQs; includes 3 parts - a system prompt, the MCQ with
multiple choices, and the instruction.

correct (i.e., passed all functional test cases). To evaluate the pass@k, we generate
n samples per prompt (n > k), count the number of samples ¢ that are functionally
correct (¢ < n), and calculate the unbiased estimator E by Kulal et al. [18]:

("s")
passQ@k = Eprompts |1 — (ﬁ) (1)
k
We use pass@1 in this work, which measures how often a model passes all test
cases on its first attempt.

5 Results and Analysis
5.1 Coding Tasks

For our analysis, we employ the pass@l metric. Figure 3 illustrates the perfor-
mance across different models and prompt sources. Proprietary models (GPT-40 and
GPT3.5) demonstrate superior performance on both MOOC and CodingSite prompts,
followed by code-finetuned models. Notably, all models consistently perform bet-
ter on CodingSite prompts compared to MOOC prompts, suggesting a difference in
prompt complexity or structure between these sources. This performance gap may be
attributed to the more structured nature of coding website problems compared to the
potentially broader, more conceptual requirements of academic assignments.

100

80

60

Pass@1

40

20

Fig. 3:

To contextualize our results, we compare CSEPrompts 2.0 with other widely used
benchmarks. Our analysis reveals that the difficulty level of CSEPrompts 2.0 falls
between that of HumanEval and MBPP, providing a balanced challenge for evaluat-
ing code generation capabilities. This intermediate positioning makes our benchmark
particularly suitable for assessing both the basic and advanced capabilities of code

00 HumanEval [l 1 MBPP [0 ¢cSEPrompts -MOOCs B CSEPrompts -Academic
I I I I I I I I

! |IHD|

I
BO 0;0 b@ﬁ béf’ ?" ?i,b b'é} <
‘b’% . q;{' b‘}) \) \s‘b’

Comparing CSEPrompts with HumanEval and MBPP based on Pass@1.

generation models in educational contexts.

5.1.1 Summary Statistics

For each

model, the Pass@1 scores were measured on four benchmarks: HumanEval,
MBPP, CSEPrompts — MOOCSs, and CSEPrompts — Academic. Table 4 summarizes the

mean and standard deviation for each model.

Table 4: Summary Statistics of Pass@1 Scores

Model Mean Pass@1 (%) | Sample Std. Dev.
GPT4o0 88.5 4.28
GPT3.5 77.33 5.94
MagiCoder 75.05 9.53
WizardCoder 72.95 5.25
CodeLLaMA 65.73 5.32
LLaMA3 45.45 12.88
StarCoder 41.03 5.01
Mistral 35.35 8.54

The summary statistics reveal clear differences in performance among the models.
GPT4o0 shows the highest mean score with low variability, indicating robust perfor-
mance across benchmarks. In contrast, models such as Mistral and StarCoder exhibit
lower means and, in some cases, higher variability. Based on these observations, we
decide that the initial descriptive analysis is sufficient to suggest that there is a sys-
tematic difference among the models. This justifies proceeding to a formal significance
test.

5.1.2 Comparison Across Models: Friedman Test

To evaluate whether the differences in Pass@1 scores among the eight evaluated mod-
els—namely, GPT40, GPT3.5, MagiCoder, WizardCoder, CodeLLaMA, LLaMA3,
StarCoder, and Mistral—are statistically significant, we applied the Friedman test.
Since all models are evaluated on the same four benchmarks, this non-parametric test
is appropriate for repeated measures.

For each benchmark, the models were ranked from 1 (lowest score) to 8 (highest
score). For instance, for HumanEval the ranking might be: GPT4o (8), GPT3.5 (7),
MagiCoder (6), WizardCoder (5), CodeLLaMA (4), LLaMA3 (3), StarCoder (2), and
Mistral (1). The sum of ranks for each model is computed across all benchmarks (see
Table 5).

Table 5: Sum of Ranks for

Each Model
Model Sum of Ranks
GPT4o0 32
GPT3.5 27
MagiCoder 24
WizardCoder 21
CodeLLaMA 16
LLaMA3 9
StarCoder 10
Mistral 5

The Friedman test statistic is given by:

k
12
2 2 _
XF = (k= 1) jgil R; —3n(k + 1), (2)

where n = 4 is the number of benchmarks and k¥ = 8 is the number of models.
With > R? = 3232, we obtain:

12
4-8-9

X7 = x 3232 — 3 x 4 x 9 ~ 26.67. (3)

With £ — 1 =7 degrees of freedom, this test statistic is significant at p < 0.01.
The Friedman test confirms that the differences in performance among the models
are statistically significant. The test statistic of approximately 26.67, which exceeds

10

the critical value for 7 degrees of freedom at p < 0.01, provides strong evidence that the
variation in Pass@1 scores across the four benchmarks is not due to random chance.
Notably, GPT4o consistently outperforms the others, while models such as StarCoder
and Mistral tend to have lower scores.

5.1.3 Comparison Across Benchmarks: Friedman Test

In addition to comparing models, we examine the performance differences across the
four benchmarks: HumanEval, MBPP, CSEPrompts — MOOCs, and CSEPrompts —
Academic. In this analysis, each model is treated as a block and the benchmarks
as treatments. For each model, the benchmarks are ranked from 1 (lowest score) to
4 (highest score). For example, for GPT4o0 the scores are: 90.3 (HumanEval), 87.3
(MBPP), 93.2 (CSEPrompts — MOOCS), and 83.2 (CSEPrompts — Academic), yielding
ranks of 3, 2, 4, and 1, respectively.

After computing the rankings for all models, we obtain the following sums of ranks
for each benchmark:

1. HumanEval: Sum of ranks = 18

2. MBPP: Sum of ranks = 23

3. CSEPrompts — MOOCs: Sum of ranks = 30
4. CSEPrompts — Academic: Sum of ranks = 9

Here now n = 8 (the number of models) and k& = 4 (the number of benchmarks).
With the sum of squares of the benchmark ranks computed as

D RF =18+ 237 4 30% + 9 = 324 + 529 + 900 + 81 = 1834, (4)

the test statistic becomes:

12 12
1834 — 3 x 8 x 5~ 2 x 1834 — 120 ~ 17.55. 5
8 4.5 XEXO N 160 ¢ (5)

Xb =
With k—1 = 3 degrees of freedom, the Friedman test yields a statistic of approximately
17.55, which is significant at p < 0.01.

The Friedman test for the benchmarks indicates that the differences in model
performance across the four datasets are statistically significant. A test statistic of
approximately 17.55, exceeding the critical value for 3 degrees of freedom at p <
0.01, confirms that the benchmarks vary in difficulty. Importantly, the CSEPrompts —
MOOCs benchmark shows the highest average rank, suggesting that it is the easiest
among the four. In contrast, the CSEPrompts — Academic benchmark has the lowest
average rank, indicating that it is the most challenging.

5.2 MCQ Tasks

We compare our Multiple Choice Question (MCQ) task results with the MathQA-
Python benchmark [2], which contains coding-related question-answer pairs. The MCQ
subset of CSEPrompts 2.0 introduces the first Code-MCQ benchmark in this domain,

11

addressing a significant gap in the evaluation of LLMs’ comprehension of programming
concepts. Figure 4 illustrates LLM performance on both datasets. Our analysis reveals
that models generally find MCQ tasks easier than open-ended QA tasks, likely due to
the additional context and limited answer set guiding responses. Notably, while pro-
prietary models excel in this task, code-finetuned models underperform, possibly due
to their specialization in structured code generation rather than MCQ-style prompts.
This performance disparity suggests that the ability to generate code does not neces-
sarily translate to strong performance in understanding and answering questions about
programming concepts, highlighting an important distinction in model capabilities.

I0MathQA [0 CSEPrompts -MCQ
I I

80 [76 7
64
| Hoo=®]
= 42
g 40 40 36 .
[
Oq? 28
20 |- 18 17 1 i
2
| B B RErey
T T T T T T T T
Y
(@9 &‘,;p Q\Yib . é"@ Qobé obé ;bé\v obé
& & A » & & N L
Y @fb’) (‘)q,} L %\?"
&x C)O

Fig. 4: Comparing CSEPrompts -MCQ with MathQA based on Zero Shot Prompting
(in percentage).

5.2.1 Summary Statistics

The performance of eight models was evaluated on two benchmarks, MathQA and
CSEPrompts — MCQ, under zero-shot prompting. The reported scores (in percent-
age) are shown in Figure 4. For each model, we compute the mean performance and
the sample standard deviation across the two benchmarks. Table 6 summarizes these
statistics for each model.

The summary statistics reveal substantial variation in performance across models.
GPT40 shows the highest mean performance, while StarCoder registers the lowest.
Models such as MagiCoder and CodeLLaMA exhibit very low variability between
benchmarks, suggesting consistent behavior, whereas others (e.g., GPT40) show larger
deviations. These descriptive results motivate further inferential testing to assess
whether the observed differences are statistically significant.

12

Table 6: Summary Statistics of Zero-
Shot Performance (%)

Model Mean (%) | Std. Dev.
GPT40 70.0 8.49
GPT3.5 48.0 8.49
LLaMA3 46.0 8.49
Mistral 32.0 5.66
MagiCoder 17.5 0.71
WizardCoder 11.0 4.24
CodeLLaMA 9.0 1.41
StarCoder 4.0 2.83

5.2.2 Comparison Across Models: Friedman Test

To determine if the differences among the eight models are statistically significant, we
apply the Friedman test, treating the two benchmarks as blocks. For each benchmark,
the models are ranked from 1 (lowest score) to 8 (highest score). For example, the
rankings for the two benchmarks are:

e MathQA: GPT4o (8), GPT3.5 (7), LLaMA3 (6), Mistral (5), MagiCoder (4),
WizardCoder (3), CodeLLaMA (2), StarCoder (1).

® CSEPrompts — MCQ: GPT4o (8), GPT3.5 (7), LLaMA3 (6), Mistral (5),
MagiCoder (4), CodeLLaMA (3), WizardCoder (2), StarCoder (1).

Thus, the sum of ranks for each model (summing the two benchmarks) is:
Raprao =16, Rgprss =14, Ripamas =12, Ruisgral = 10,

RMagiCoder = 8, BRwizardCoder = 67 RcodeLLaMA = 47 Rstarcoder = 2.
Now, n = 2 (benchmarks) and k = 8 (models). With

> R? =167 + 142 + 122 + 10% + 82 + 62 + 4% + 22 = 816, (6)
we have:
12 12
2 _ . - _ [_ = — =
b= 5y X816 3% 2x 9= o X816 — 54 =68 — 54 = 14. (7)

With 7 degrees of freedom, a test statistic of 14 is marginally below the critical value
at the 0.05 significance level (approximately 14.07), indicating borderline significance.

The Friedman test for models yields a statistic of 14 with 7 degrees of freedom,
which is at the threshold of significance. Although the overall ranking indicates that
GPT40 outperforms the other models, the evidence is marginal.

5.2.3 Comparison Across Benchmarks: Friedman Test

To assess whether the performance differences between the two benchmarks (MathQA
and CSEPrompts — MCQ) are statistically significant, we treat each model as a block
and the benchmarks as treatments. For each model, the two benchmark scores are

13

ranked from 1 (lower performance) to 2 (higher performance). Table 7 summarizes
these rankings.

Table 7: Benchmark Rankings for Each Model

Model MathQA Rank | CSEPrompts — MCQ Rank
GPT4o0
GPT3.5
LLaMA3
Mistral
MagiCoder
WizardCoder
CodeLLaMA
StarCoder

— = N N e
NN - = DNDNNDDN

From Table 7, the sum of ranks for each benchmark is computed as follows:
Ryvathga =1+14+14+14+2+2+1+1=10, (8)

RCSEPrOmptsfMCQ:2+2+2+2+1+1+2+2:14. (9)
With n = 8 (models) and & = 2 (benchmarks), the Friedman test statistic is
calculated using:

k
12
2 2
= g R; —3n(k+1). 10
Xr nk(k+1)j=1 ! Mk (10
Substituting the values:

> R? =10 + 14% = 100 + 196 = 296, (11)

12 x296—-3x8%x3 = 12 x296—72=0.25x296—-72="T74—-72=2. (12)
8§x2x3 48

With 1 degree of freedom, the critical value at p = 0.05 is approximately 3.84, so
a test statistic of 2 is not significant.

The Friedman test comparing benchmarks yields a test statistic of 2 (with 1 degree
of freedom), which is not significant at the 0.05 level. This indicates that there is no sta-
tistically significant difference in performance between the MathQA and CSEPrompts —
MCQ benchmarks across the eight models. Although individual models such as Magi-
Coder and WizardCoder show a reversal in ranking between benchmarks, the overall
evidence suggests that the benchmarks are comparable in difficulty.

Xp =

6 Error Analysis

In this section, we present an error analysis of different code generation models in two
distinct environments: coding sites and academic settings. Our analysis reveals four
major categories of errors consistently encountered by these models: (1) syntax-related
issues (Indentation and general Syntax errors), (2) naming and referencing problems

14

(Name, Attribute, and Key errors), (3) data handling errors (Value and Type errors),
and (4) runtime issues (Recursion, Import, and SystemEwit errors). Tables 8 and 9
show the percentage distribution of these error types for each model in coding sites
and academic tasks, respectively. This comprehensive categorization enables a detailed
assessment of model performance across different programming contexts.

Table 8: Error Analysis (in percentage): Coding Sites

Error Type GPT4o | GPT 3.5 | Magi Coder | Wizard Coder | Code LLaMA | Star Coder | LLaMA3 | Mistral
Name 2.00 2.50 4.00 4.50 5.00 4.50

Indentation 1.00 3.00 5.00 - 7.00 7.00 8.00 9.00
Value 1.50 4.00 - - 8.00 8.00 9.00 10.00
Type 2.00 4.50 5.00 6.00 7.00 8.50 - -
Syntax 0.50 0.50 8.50 9.50 10.00 11.00
UnboundLocal - 2.00 2.50 4.00 4.50 5.50 7.00 8.00
Attribute - - - 3.50 4.50 5.00 6.00 7.00
Recursion 1.00 1.50 3.50 6.00 7.00 8.00
ModuleNotFound - 1.00 1.50 2.50 3.50 4.50 6.00 7.00
Index - 1.00 2.00 3.50 4.50 5.50 - 8.00
Key - - 2.00 - - 4.50 6.00 7.00
Import 2.50 2.00 4.00 6.00 7.00
Tab - 0.50 - - 2.50 - 6.00 -
System Exit - 0.50 - 2.00 2.50 3.00 4.00 5.00
Infinite Loop 0.50 2.00 4.00 5.00

In the coding sites environment (Table 8), we observe a relatively even distribu-
tion of errors across categories, with Name, Indentation, and Type errors emerging as
the most prevalent across models. Notably, Magi Coder shows a significant proportion
of Name errors (4.00%), suggesting challenges with variable naming and scope man-
agement. Similarly, GPT 3.5 exhibits notable Name errors (2.50%). The more recent
models - Star Coder, LLaMA3, and Mistral - demonstrate higher rates of Syntaz errors,
indicating fundamental challenges with code structure and formatting requirements.

Table 9: Error Analysis (in percentage): Academic

Error Type GPT4o0 | GPT 3.5 | Magi Coder | Wizard Coder | Code LLaMA | Star Coder | LLaMA3 | Mistral
Name 1.00 5.25 7.25 3.00 - 3.50 2.00 4.00
Indentation 1.00 2.50 3.75 2.25 2.00 5.50 3.00 2.50
Value 0.50 3.00 2.00 1.00 1.00 3.50 2.50 1.00
Type 2.50 3.50 3.00 3.50 1.50 5.00 4.50 2.00
Syntax - - - - - 5.50 6.00 5.75
Attribute 0.50 3.00 2.50 2.25 2.00 3.75 3.25 3.00
Recursion 0.25 1.50 1.75 2.50 2.50 2.00 2.75 2.25
ModuleNotFound 0.25 2.00 1.25 1.75 2.00 3.00 2.25 2.50
Index 0.50 1.50 2.50 1.50 1.00 2.25 3.00 2.75
Key - 0.50 1.00 1.00 1.00 1.75 1.25 1.50
Import - 0.75 0.50 1.25 1.50 1.50 2.00 1.75
ZeroDivision 1.00 1.00 1.00 1.00 1.00 - - -
FileNotFound 0.50 1.50 0.75 1.00 0.75

Exception — 0.25 0.50 0.75 0.75 0.25 0.50 0.75

The academic environment (Table 9) presents a markedly different error distri-
bution pattern. Models like Code LLaMA, Star Coder, LLaMA3, and Mistral show
elevated rates of Syntax, Value, and Type errors. For instance, Mistral’s high Syntax
error rate (5.75%) and consistent Value error occurrences point to difficulties in han-
dling academic code complexity. These patterns suggest that these models struggle

15

with both advanced programming concepts and the more rigorous syntax require-
ments typical in academic assignments, particularly when dealing with complex data
structures and algorithmic implementations.

Cross-environmental comparison reveals GPT40’s consistent superior performance,
maintaining low error rates across all major categories in both settings. This consis-
tency suggests a robust capability in generating correct code regardless of the context.
The generally higher error rates in academic settings likely stem from several factors:
the presence of more complex algorithms, requirements for specialized libraries, and
stricter formatting standards. These elements may be underrepresented in the training
data of models like Code LLaMA and Mistral.

Furthermore, academic tasks often demand a deeper grasp of theoretical concepts,
potentially exceeding these models’ current capabilities. These findings underscore
the importance of careful model selection based on the intended application context,
particularly in educational settings where code quality and conceptual understanding
are equally important.

Sample Errors

To exemplify some of the errors mentioned previously, we present below examples of
errors generated by different models:

Prompt: Write a function mid(s) that returns the middle character of a string if
its length is odd, or the two middle characters if its length is even.

Code generated by CodeLLaMA:

def mid(s):
center = len(s) // 2
return s[center] + s[center + 1]

Error type: IndexError: string index out of range

Prompt: Convert the two lists height_list and weight_list into NumPy arrays
named height_arr and weight_arr.

Code generated by Mistral:

import numpyy as np

height_list = [170, 165, 180]
weight_list = [70, 60, 85]
height_arr = np.array(height_list)
weight_arr np.array(weight_list)

Error type: ModuleNotFoundError: No module named ’numpyy’

16

Prompt: Given a NumPy array BMI_array, return a list of indices where the BMI
value is strictly greater than 23.

Code generated by LLaMA3:

import numpy as np
BMI_array = np.array([24.22, 22.04, 26.23])
above = []
for val in BMI_array:
if val > 23:
above .append (BMI_array[val])
print (above)

Error type: TypeError

7 Conclusion and Future Work

In this work, we evaluated the performance of various Large Language Models
(LLMSs) on introductory computer science tasks, focusing on Multiple Choice Ques-
tions (MCQs) and Python programming assignments. We compiled CSEPrompts 2.0,
a diverse evaluation framework comprising prompts from online coding platforms, aca-
demic resources, and programming courses. By analyzing eight state-of-the-art LLMs,
we provided detailed performance metrics and error analyses to address four key
research questions.

RQ1: How do LLMs perform on introductory CS assignments?

Both our prior and current studies consistently show that state-of-the-art LLMs gen-
erate high-quality outputs on introductory computer science assignments. In our prior
study [31], all models were shown to perform well on CSEPrompts with GPT out-
performing the other seven models. The expanded evaluation on CSEPrompts 2.0
confirms this finding, with GPT-based models (specifically GPT40 and GPT 3.5)
demonstrating superior performance. While both studies reveal that LLMs perform
better on MOOCs-based prompts compared to traditional benchmarks, the current
study adds nuance by emphasizing that academic-style prompts—characterized by
their integration of theoretical content and practical coding challenges—continue to
pose significant difficulties. This suggests that even as overall performance improves,
the complexity of academic content remains a persistent challenge.

RQ2: Is there a performance difference between coding websites and
academic MOOCs?

In both analyses, a distinct performance gap is evident between prompts originating
from coding websites and those from academic MOOCs. Our earlier study [31] reported
that LLMs found coding website prompts easier, while academic MOOC prompts
proved more challenging. The current study not only replicates this observation on
CSEPrompts 2.0 but also provides further insight by quantifying higher accuracy and

17

lower error rates on coding website prompts. In contrast, academic prompts—which
often involve abstract concepts and deeper theoretical integration—consistently result
in increased error rates. This reinforces the idea that the nature of the content
(practical versus academic) significantly influences LLM performance.

RQ3: How do LLMs perform in code generation tasks compared to MCQs?

Contrary to the initial assumption that LLMs would excel in natural language tasks
like answering MCQs, both studies reveal a consistent trend: LLMs generate code more
reliably than they answer multiple-choice questions. Our earlier study [31] highlighted
that, despite LLMs being primarily designed for text generation, they performed better
in code generation. The current study confirms and deepens this finding by demon-
strating that the structured syntax and clear semantics of programming languages
allow LLMs to produce syntactically correct and logically coherent code, whereas the
nuanced comprehension required for MCQs leads to comparatively lower performance.

RQ/4: How do Code LLMs compare to general-purpose LLMs in CS tasks?

Both studies agree that model specialization plays a significant role in task per-
formance. Our earlier study [31] noted that GPT3.5—a larger, general-purpose
model—outperformed other models overall, yet observed that general-purpose LLMs
tend to do better on MCQs while Code LLMs excel in coding tasks. The current study
expands on this by confirming that while larger general-purpose models (GPT40 and
GPT 3.5) achieve the highest overall performance, the specialization of Code LLMs,
driven by training on extensive programming repositories, provides them with an edge
on coding-specific tasks. This clear division of strengths reinforces the importance
of selecting models based on the specific requirements of the task—whether it be
theoretical understanding assessed through MCQs or practical coding proficiency.

7.1 Future Directions

The refined insights from CSEPrompts 2.0 build upon our initial findings by incorpo-
rating a wider range of coding prompts and more challenging academic MCQs. Our
current work not only corroborates the previous trends—such as superior performance
on MOOCs-based prompts and a consistent gap between coding website and academic
prompt performance—but also opens new avenues for exploration. Future research
will focus on:
e Expanding the dataset to include a diverse set of prompts spanning multiple
programming languages and advanced computer science topics.
e Conducting in-depth analyses of code characteristics such as comprehensibility,
security, and algorithmic complexity.
e Investigating the underlying factors that contribute to performance disparities
between academic and non-academic prompts.
These efforts aim to refine the application of LLMs in educational contexts, enhancing
both automated assessment systems and tailored instructional strategies. Ultimately,
our work underscores that while current LLMs show remarkable capabilities in coding
tasks, careful consideration of prompt type and model specialization is essential for
optimizing their deployment in computer science education.

18

Funding None

19

References

[1] Achiam, J., S. Adler, S. Agarwal, et al. 2023. Gpt-4 technical report.
arXiv:2303.0877/4 . https://doi.org/10.48550/arXiv.2303.08774 .

[2] Austin, J., A. Odena, M. Nye, and et al. 2021. Program synthesis with large lan-
guage models. arXiv preprint arXiv:2108.07732. https://doi.org/10.48550/arXiv.
2108.07732 .

[3] Black, S., L. Gao, P. Wang, et al. 2022. Gpt-neox-20b: An open-source autore-
gressive language model. arXiw:2204.06745. https://doi.org/10.48550/arXiv.2204.
06745 .

[4] Brown, T.B., B. Mann, N. Ryder, et al. 2020. Language models are few-shot
learners. Advances in neural information processing systems. https://doi.org/10.
48550/ arXiv.2005.14165 .

[5] Chen, M., J. Tworek, H. Jun, et al. 2021. Evaluating large language models trained
on code. arXiv:2107.0337/. https://doi.org/10.48550/arXiv.2107.03374 .

[6] Chowdhery, A., S. Narang, J. Devlin, et al. 2022. Palm: Scaling language modeling
with pathways. arXiw:2204.02311. https://doi.org/10.48550/arXiv.2204.02311 .

[7] Devlin, J., M.W. Chang, K. Lee, et al. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of NAACL,
10.18653/V1/N19-1423.

[8] Dubey, A., A. Jauhri, A. Pandey, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783. https://doi.org/10.48550/arXiv.2407.21783 .

[9] Feng, Z., D. Guo, D. Tang, et al. 2020. Codebert: A pre-trained model for pro-
gramming and natural languages. In Findings of the Association for Computational
Linguistics: EMNLP 2020, 10.18653/v1/2020.findings-emnlp.139.

[10] Green, C. 1969. Application of theorem proving to problem solv-
ing. In Proc. of the 1st Intl. Joint Conf. on Artificial Intelligence, DOI:
https://www.ijcai.org/Proceedings/69/Papers/023.pdf, 1JCAT'69, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

[11] Gulwani, S., O. Polozov, R. Singh, et al. 2017. Program synthesis. Foundations
and Trends(®) in Programming Languages 4(1-2): 1-119. https://doi.org/10.1561/
2500000010 .

[12] Guo, D., S. Ren, S. Lu, et al. 2020. Graphcodebert: Pre-training code representa-
tions with data flow. arXiv preprint arXiv:2009.08366. https://doi.org/10.48550/
arXiv.2009.08366 .

20

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.2204.06745
https://doi.org/10.48550/arXiv.2204.06745
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366

[13] Halaweh, M. 2023. Chatgpt in education: Strategies for responsible implemen-
tation. Contemporary Educational Technology 15(2). https://doi.org/10.30935/
cedtech/13036 .

[14] Haruna-Cooper, L. and M.A. Rashid. 2023. Gpt-4: the future of artificial intel-
ligence in medical school assessments. Journal of the Royal Society of Medicine:
01410768231181251. https://doi.org/10.1177/01410768231181251 .

[15] Iyer, S., I. Konstas, A. Cheung, et al. 2018. Mapping language to code in pro-
grammatic context. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, 10.18653/v1/D18-1192. PMLR.

[16] Jiang, A.Q., A. Sablayrolles, A. Mensch, et al. 2023. Mistral 7b. arXiv preprint
arXiv:2310.06825. https://doi.org/10.48550/arXiv.2310.06825 .

[17] Katz, D.M., M.J. Bommarito, S. Gao, et al. 2023. Gpt-4 passes the bar exam.
SSRN. https://doi.org/10.2139/ssrn.4389233 .

[18] Kulal, S., P. Pasupat, K. Chandra, et al. 2019. Spoc: Search-based pseu-
docode to code. In Advances in Neural Information Processing Systems,
10.48550/arXiv.1906.04908.

[19] Li, R., L.B. Allal, Y. Zi, et al. 2023. Starcoder: may the source be with you!
arXiv preprint arXiw:2305.06161. https://doi.org/10.48550/arXiv.2305.06161 .

[20] Liu, J., C.S. Xia, Y. Wang, et al. 2024. Is your code generated by chatgpt really
correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 10.48550/arXiv.2305.01337 36 .

[21] Lo, C.K. 2023. What is the impact of chatgpt on education? a rapid review of the
literature. Education Sciences 13(4): 410. https://doi.org/10.3390/educscil 3040410

[22] Lukasczyk, S. and G. Fraser 2022. Pynguin: Automated unit test generation
for python. In Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings, 10.1145/3510454.3516829, pp. 168
172.

[23] Luo, Z., C. Xu, P. Zhao, et al. 2023. Wizardcoder: Empowering code large
language models with evol-instruct. arXiv preprint arXiv:2306.08568. https:
//doi.org/10.48550/arXiv.2306.08568 .

[24] Manna, Z. and R.J. Waldinger. 1971. Toward automatic program synthesis. https:
//doi.org/10.1145/362566.362568 .

[25] Mikolov, T., I. Sutskever, K. Chen, et al. 2013. Distributed representa-
tions of words and phrases and their compositionality. In Proceedings of NIPS,

21

https://doi.org/10.30935/cedtech/13036
https://doi.org/10.30935/cedtech/13036
https://doi.org/10.1177/01410768231181251
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.2139/ssrn.4389233
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.3390/educsci13040410
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.1145/362566.362568
https://doi.org/10.1145/362566.362568

10.48550/arXiv.1310.4546.

[26] Nijkamp, E., J. Lee, H. Touvron, et al. 2022. Codegen: An open large language
model for code with multi-turn program synthesis. arXiv:2203.13474. https://doi.
org/10.48550/arXiv.2203.13474 .

[27] OpenAl. 2024. Gpt-4 omni: A comprehensive multimodal model for language,
vision, and beyond. arXiv preprint arXiw:2408.01234. https://doi.org/10.48550/
arXiv.2408.01234 .

[28] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for
word representation. In Proceedings of EMNLP, 10.8115/v1/D14-1162.

[29] Peters, M.E., M. Neumann, M. Iyyer, et al. 2018. Deep contextualized word
representations. In Proceedings of ACL, 10.18653/v1/N18-1202.

[30] Raihan, N., A. Anastasopoulos, and M. Zampieri 2025, April. mHumanEval - a
multilingual benchmark to evaluate large language models for code generation. In
L. Chiruzzo, A. Ritter, and L. Wang (Eds.), Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1: Long Papers). Association for
Computational Linguistics.

[31] Raihan, N., D. Goswami, S.S.C. Puspo, et al. 2024. Cseprompts: A bench-
mark of introductory computer science prompts. In International Symposium on
Methodologies for Intelligent Systems.

[32] Raihan, N.; C. Newman, and M. Zampieri 2024. Code llms: A taxonomy-
based survey. In 2024 IEEE International Conference on Big Data (BigData),
10.1109/BigData623253.2024.10826108.

[33] Raihan, N., J. Santos, and M. Zampieri. 2024. Mojobench: Language modeling
and benchmarks for mojo. arXiv preprint arXiw:2410.17736. https://doi.org/10.
48550/arXiv.2410.17736 .

[34] Raihan, N., M.L. Siddiq, J.C. Santos, et al. 2025. Large language models
in computer science education: A systematic literature review. In Proceedings
of the 56th ACM Technical Symposium on Computer Science Education V. 1,
10.1145/58699459.3703350.

[35] Rogers, A., O. Kovaleva, and A. Rumshisky. 2020. A primer in bertology: What
we know about how bert works. Transactions of the Association for Computational
Linguistics 8: 842-866. https://doi.org/10.1162/tacl_a_00349 .

[36] Roziere, B., J. Gehring, F. Gloeckle, et al. 2023. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950. https://doi.org/10.48550/arXiv.
2308.12950 .

22

https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.48550/arXiv.2408.01234
https://doi.org/10.48550/arXiv.2408.01234
https://doi.org/10.48550/arXiv.2410.17736
https://doi.org/10.48550/arXiv.2410.17736
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950

[37] Savelka, J., A. Agarwal, C. Bogart, et al. 2023. Can generative pre-trained trans-
formers (gpt) pass assessments in higher education programming courses? arXiv
preprint arXiw:2303.09325. https://doi.org/10.48550/arXiv.2303.09325 .

[38] Siddiq, M.L., S.B. Dristi, J. Saha, et al. 2024. The fault in our stars:
Quality assessment of code generation benchmarksn. In 24th IEEE Inter-
national Conference on Source Code Analysis and Manipulation (SCAM),
10.1109/SCAM63248.2024.00018.

[39] Sok, S. and K. Heng. 2023. Chatgpt for education and research: A review of ben-
efits and risks. Awvailable at SSRN 4378735. https://doi.org/10.2139/ssrn.4378735

[40] Surameery, N.M.S. and M.Y. Shakor. 2023. Use chat gpt to solve programming
bugs. International Journal of Information Technology & Computer Engineering
(IJITC) ISSN: 2455-5290 3(01): 17-22. https://doi.org/10.55529/ijitc.31.17.22 .

[41] Svyatkovskiy, A., S.K. Zhao, S. Fu, et al. 2021. Fast and memory-efficient neural
code completion. In ICML, 10.1109/MSR52588.2021.00045.

[42] Vaswani, A., N. Shazeer, N. Parmar, et al. 2017. Attention is all you need.
In I. Guyon, U. V. Luxburg, S. Bengio, and et al. (Eds.), Advances in Neural
Information Processing Systems, 10.48550/arXiv.1706.03762, Volume 30. Curran
Associates, Inc.

[43] Wang, B. and A. Komatsuzaki. 2021. Gpt-j-6b: A 6 billion parameter autoregres-
sive language model. arXiv, 10.5281/zenodo.5297110.. https://doi.org/10.5281/
zenodo.5297110. .

[44] Wang, X., Y. Wang, F. Mi, et al. 2021. Syncobert: Syntax-guided multi-modal
contrastive pre-training for code representation. arXiv preprint arXiv:2108.04556.
https://doi.org/10.48550/arXiv.2108.04556 .

[45] Wang, Y., W. Wang, S. Joty, et al. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, 10.18653/v1/2021.emnlp-main.685.

[46] Wei, Y., Z. Wang, J. Liu, et al. 2023. Magicoder: Source code is all you need.
arXiv preprint arXiw:2312.02120. https://doi.org/10.48550/arXiv.2312.02120 .

[47] Zan, X.V., M. Deng, D. Yang, et al. 2022. A survey of benchmarks for natural
language to code generation. In ACL, 10.18653/v1/2022.acl-long.412.

[48] Zhang, S.J., S. Florin, Lee, and et al. 2023. Exploring the mit mathematics and
eecs curriculum using large language models. arXiv preprint arXiv:2306.08997.
https://doi.org/10.48550/arXiv.2306.08997 .

23

https://doi.org/10.48550/arXiv.2303.09325
https://doi.org/10.2139/ssrn.4378735
https://doi.org/10.55529/ijitc.31.17.22
https://doi.org/10.5281/zenodo.5297110.
https://doi.org/10.5281/zenodo.5297110.
https://doi.org/10.48550/arXiv.2108.04556
https://doi.org/10.48550/arXiv.2312.02120
https://doi.org/10.48550/arXiv.2306.08997

Appendix A Data Sources

Table A1: List of Coding Websites & MOOCs

Name Link

CodingBat https://codingbat.com/python

Learn Python https://www.learnpython.org

Edabit https://edabit.com/challenges/python3

Python Principles
Hacker Rank

Edx

Coursera

CS50 (Harvard)
PforE (UMich)
CS1301xI (GT)
CS1301xII (GT)
CS1301xIIT (GT)
CS1301xIV (GT)
Programming in Python (Meta)

https://pythonprinciples.com/challenges/
https://www.hackerrank.com/domains/python

https://www.edx.org

https://www.coursera.org
https://learning.edx.org/course/course-v1:HarvardX+CS50S+Scratch /home
https://www.coursera.org/learn/python/home
https://learning.edx.org/course/course-v1:GTx+CS1301x14-1T2023 /home
https://learning.edx.org/course/course-v1:GTx+CS1301xII+1T2023/home
https://learning.edx.org/course/course-v1:GTx+CS1301xI11+1T2023/home
https://learning.edx.org/course/course-v1:GTx+CS1301xIV+1T2023 /home
https://www.coursera.org/learn/programming-in-python

24

https://codingbat.com/python
https://www.learnpython.org
https://edabit.com/challenges/python3
https://pythonprinciples.com/challenges/
https://www.hackerrank.com/domains/python
https://www.edx.org
https://www.coursera.org
https://learning.edx.org/course/course-v1:HarvardX+CS50S+Scratch/home
https://www.coursera.org/learn/python/home
https://learning.edx.org/course/course-v1:GTx+CS1301xI+1T2023/home
https://learning.edx.org/course/course-v1:GTx+CS1301xII+1T2023/home
https://learning.edx.org/course/course-v1:GTx+CS1301xIII+1T2023/home
https://learning.edx.org/course/course-v1:GTx+CS1301xIV+1T2023/home
https://www.coursera.org/learn/programming-in-python

Appendix B Sample Prompts

Promptl.
You are given the coefficients of a polynomial P.
Your task is to find the value of P at point x.
Prompt2.
You are given a square matrix A with dimensions N x N.
Your task is to find the determinant.
Prompt3.

(a) Sample Prompts from the Coding Sites.

Promptl.
implement a program that prompts the user for the answer to the Great
Question of Life, the Universe and Everything, outputting Yes if the
user inputs 42 or (case-insensitively) forty-two or forty two.
Otherwise output No.

Prompt2.
implement a program that prompts the user for a greeting. If the
greeting starts with "hello", output $0. If the greeting starts with
an "h" (but not "hello"), output $20. Otherwise, output $100. Ignore
any leading whitespace in the user’s greeting, and treat the user’s
greeting case-insensitively.

Prompt3.
(b) Sample Prompts from the MOOCs.

Prompt1.

def func(x): return x * 2

print (func(3))

What is the output?

6 3 9 None
Prompt2.

print (float(5))

What will be the output?
5 5.0 None Error
Prompt3.

(c) Sample MCQ Prompts.

Fig. B1: Sample prompts from CSEPrompts 2.0

25

Appendix C Inclusion and Exclusion Criteria

This appendix outlines the comprehensive criteria applied in selecting coding exer-
cises and MCQ prompts for our dataset. These criteria were designed to ensure that
the methodology remains transparent, replicable, and aligned with the objectives of
introductory Python education.

C.1 Applied on Coding Prompts

Table C2: Inclusion and Exclusion Criteria for Coding Prompts

Criterion Type Description and Technical Example
Details
Inclusion: Self- The exercise must be fully self- A Python function prompt
Containment contained. All necessary context, that defines all inputs in the
parameters, and variable defini- description and provides sam-
tions must be provided within ple input/output directly (e.g.,
the prompt, ensuring no exter- “Implement a function that
nal references are needed. returns the square of a number;
given input 3, output 9”).
Inclusion: Clear The problem must present A challenge stating: “Given a list
Specifications an unambiguous statement of integers, return a new list with
with explicit definitions for each element doubled. For input
expected inputs and outputs. [1, 2, 3], output should be [2, 4,
This includes technical details 6].”
such as data types, valid input
ranges, and any operational
constraints (e.g., expected time
complexity).
Inclusion: Core The exercise should focus on A task that requires iterating

Programming Con-
structs

basic programming elements
such as loops, conditionals,
functions, and elementary data
structures (e.g., lists, dictio-
naries). It must be directly
applicable to the curriculum of
an introductory Python course.

over a list using a for-loop to
compute the sum of its elements,
illustrating basic control flow.

Exclusion: File I/O
and Terminal Oper-
ations

Any exercise that involves file
input/output or requires interac-
tion with the command line/ter-
minal is excluded. This is due to
the inherent limitations in Lan-
guage Learning Models (LLMs)
for reliably handling such opera-
tions.

A problem that instructs:
“Read data from input.txt and
write the processed results to
output.txt.”

Exclusion: Ambigu-
ous Evaluation Cri-
teria

Exercises with vague or subjec-
tive instructions that could lead
to inconsistent automated grad-
ing are omitted. Clear, technical
grading metrics must be speci-
fied to ensure reproducibility in
evaluation.

A prompt that simply states:
“Optimize the code” without
defining whether the focus is on
reducing time complexity, mem-
ory usage, or another specific
metric.

Exclusion: External
Library Dependen-
cies

Problems requiring libraries
beyond the Python Standard
Library are excluded. This
ensures that exercises remain
focused on core language fea-
tures and avoids potential issues
with library installation or ver-
sioning.

A challenge that requires the use
of a third-party package, such as
numpy, for performing operations
that could otherwise be imple-
mented with standard Python
lists.

26

C.2 Applied on MCQ Prompts

Table C3: Inclusion and Exclusion Criteria for MCQ Prompts

Criterion Type

Description and Technical
Details

Example

Inclusion: Clear
Question Stem

The MCQ prompt must present
a well-defined question stem that
encapsulates a single, focused
inquiry. It should provide all
necessary context and use pre-
cise technical language to ensure
that the question is unambigu-
ous and self-contained.

A question such as: “Which
of the following data types is
immutable in Python?” where
the stem clearly defines the con-
cept under assessment.

Inclusion: Unam-
biguous Answer
Choices

All answer options must be dis-
tinct and adhere to a consistent
format. Each option should be
clearly identifiable as either cor-
rect or incorrect, without over-
lapping concepts or technical
inaccuracies.

Answer choices: “List”, “Tuple”,

“Dictionary”, “Set” with
“Tuple” being the correct
option.

Inclusion: Adequate
Distractor Quality

Distractors should be plausi-
ble yet technically incorrect,
designed to challenge students
by testing their understanding of
subtle differences between sim-
ilar concepts. They must be
crafted to avoid common mis-
conceptions while remaining suf-
ficiently challenging.

Distractors that include data
structures with similar charac-
teristics, e.g., comparing muta-
ble versus immutable types.

Exclusion: Ambigu-
ous Distractors

Any MCQ prompt where dis-
tractors are overly vague or
too similar to the correct
answer—thereby risking subjec-
tive interpretation—is excluded.
This ensures a clear distinction
between correct and incorrect
responses.

A question with options such
as “Tuple”, “Immutable list”,
“Frozen list”, where the phras-
ing may lead to confusion about
Python’s data types.

Exclusion:
Non-Standard Ter-
minology

MCQs that utilize informal
language, colloquialisms, or
non-standard technical terms
are omitted. This exclusion

maintains academic rigor and
ensures consistency in terminol-
ogy across prompts.

A prompt using “cool variable
type” instead of the accepted
term “immutable type”.

Exclusion: Com-
pound Questions

Questions that conflate multiple
concepts or assessment objec-
tives in a single prompt are
excluded. Each MCQ should tar-
get a single, clearly defined con-
cept to facilitate precise evalua-
tion.

A compound question such as:
“Which data type is immutable
and supports indexing?” where
combining two properties can
obscure the primary learning
objective.

27

	Introduction
	Related Work
	Code Generation Models
	Code Generation Benchmarks

	CSEPrompts 2.0
	Data Sources
	Coding Websites
	MOOCs

	Dataset Statistics
	Data Collection Strategy

	Experiments
	Large Langauge Models (LLMs)
	Code Generation
	Evaluation Metric

	Results and Analysis
	Coding Tasks
	Summary Statistics
	Comparison Across Models: Friedman Test
	Comparison Across Benchmarks: Friedman Test

	MCQ Tasks
	Summary Statistics
	Comparison Across Models: Friedman Test
	Comparison Across Benchmarks: Friedman Test

	Error Analysis
	Conclusion and Future Work
	RQ1: How do LLMs perform on introductory CS assignments?
	RQ2: Is there a performance difference between coding websites and academic MOOCs?
	RQ3: How do LLMs perform in code generation tasks compared to MCQs?
	RQ4: How do Code LLMs compare to general-purpose LLMs in CS tasks?

	Future Directions

	Data Sources
	Sample Prompts
	Inclusion and Exclusion Criteria
	Applied on Coding Prompts
	Applied on MCQ Prompts

