
An Empirical Study of Tactical Vulnerabilities

Joanna C. S. Santosa, Katy Tarrita, Adriana Sejfiaa, Mehdi Mirakhorlia, Matthias Galsterb

aSoftware Engineering Department, Rochester Institute of Technology. USA.
bDepartment of Computer Science and Software Engineering, University of Canterbury. New Zealand.

Abstract

Architectural security tactics (e.g., authorization, authentication) are used to achieve stakeholders’ security requirements. Secu-
rity tactics allow the system to react, resist, detect and recover from attacks. Flaws in the adoption of these tactics into the system’s
architecture, an incorrect implementation of security tactics, or deterioration of tactic implementations over time can introduce
severe vulnerabilities that are exploitable by attackers. Therefore, in this work, we present the Common Architectural Weakness
Enumeration (CAWE), a catalog of known weaknesses rooted in the design or implementation of security tactics which can result
in tactical vulnerabilities. We categorized all known software weaknesses as tactic-related and non-tactic related. This way, our
CAWE catalog enumerates common weaknesses in a security architecture that can lead to tactical vulnerabilities. From our CAWE
catalog, we found 223 different types of tactical vulnerabilities. In this work, we also used this catalog to study tactical vulnera-
bilities in three large-scale open source projects: Chromium, PHP, and Thunderbird. In a detailed analysis, we identified the most
occurring vulnerability types on these projects. From this study we observed that (i) Improper Input Validation and Improper Access
Control were the most occurring vulnerability types in Chromium, PHP and Thunderbird and (ii) “Validate Inputs” and “Authorize
Actors” were the security tactics mostly affected by these tactical vulnerabilities. Moreover, in a qualitative analysis of 632 tactical
vulnerabilities and their fixes in these systems, we characterized their root causes and investigated the way the original developers
of each system fixed these vulnerabilities. From this qualitative analysis, we found 44 distinct root causes that lead to these tactical
vulnerabilities. The results of this study not only show how architectural weaknesses in systems have created severe vulnerabilities,
but also provide recommendations driven by empirical data for addressing such security problems.
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1. Introduction

Software engineers face an increasing pressure to deliver software applications that are secure by design [1], i.e., software ap-
plications that are designed from the ground up in a way that prevents or at least minimizes the impacts of vulnerabilities (here, a
vulnerability is a possibility of a system being attacked or harmed). To achieve this, software architects work with stakeholders to
identify security concerns and adopt appropriate architectural solutions to address them, forming the software’s security architec-5

ture [2, 3]. These architectural solutions are often based on security tactics [4], which are reusable design solutions for achieving
security quality attributes. Bass et al. [3] provide a comprehensive list of such tactics and classify them into tactics for resisting
attacks (e.g., tactic “Authenticate Actors”), detecting attacks (e.g., tactic “Detect Intrusion”), reacting to attacks (e.g., tactic “Revoke
Access”), and recovering from attacks (e.g., tactic “Audit”).

Security tactics are the building blocks of a security architecture. A flaw in the adoption of these tactics into the architecture of10

a system, incorrect implementation of these tactics in the source code [5], or their deterioration during maintenance activities [6]
can lead to severe vulnerabilities. In this paper, we define and refer to these vulnerabilities as tactical vulnerabilities. An example
of a tactical vulnerability is the Use of Client-Side Authentication. In this example, the “Authenticate Actors” tactic [3] is adopted
at the client side, therefore, the authenticity verification is performed by the code on the client rather than by the code on the
server. This will enable attackers to reverse engineer the client code and develop a modified client that omits the authentication15

check, bypassing the authentication mechanism. While this example shows a weakness that can occur during the software design
process, in a previous work [7] we found that even when the architecture is appropriately designed to satisfy its quality requirements,
developers may implement the architectural tactics incorrectly, compromising architectural quality.

As an example, consider that architects mitigate the issue in the “Authenticate Actors” tactic by changing the security architecture
to place the authentication check on the server side. Even though the system is now more resilient against attacks, developers still20

may fail to correctly implement the tactic by relying on cookies to implement the authentication logic. Listing 1 shows such incorrect
implementation. In this code snippet, a PHP Web application is storing a value equal to “1” in an HTTP cookie (line 5) whenever
a new user successfully authenticates. This cookie is later utilized to check whether the user has already logged in (line 2) and to
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grant access to the system (line 11). In this case, developers of this application assumed the immutability of HTTP cookies when, in
reality, attackers can change the “authenticate” cookie to “1” and send an HTTP request to the application with this modified25

cookie. This would result in an authentication-bypass.

Listing 1 An example of an incorrect implementation of the tactic “Authenticate Actors” in a Web application written in PHP resulting in an
authentication-bypass.

1 $ a u t h = $ COOKIES [ ' a u t h e n t i c a t e d ' ] ;
2 i f ( ! $ a u t h ) {
3 i f ( a u t h e n t i c a t e ( $ POST [ ' username ' ] , $ POST [ ' password ' ] ) ) {
4 / / s ave t h e c o o k i e t o be s e n t o u t i n f u t u r e r e s p o n s e s
5 s e t c o o k i e ( ' a u t h e n t i c a t e d ' , ' 1 ' , t ime ( ) +60*60*2) ;
6 } e l s e {
7 showLoginScreen ( ) ; / / r e q u e s t u s e r t o l o g i n
8 d i e ( ' \n ' ) ; / / k i l l t h e p r o c e s s
9 }

10 }
11 p e r f o r m P r i v i l e g e d A c t i o n ( ) ;

Despite the importance of the software architecture in achieving security [8], recent empirical studies of software vulnerabilities
have not fully explored the architectural context, including design decisions such as tactics and patterns [9, 10, 11]. They typi-
cally focus on studying and understanding security issues related to the management of data structures and variables (e.g., buffer
overflow/over-read). Others have developed architecture analysis techniques to correlate design violations with software vulnerabil-30

ities [1]. While such studies have investigated software vulnerabilities from structural perspectives, we currently lack an in-depth
understanding of the nature and root causes of tactical vulnerabilities, which would help teach software developers and architects to
avoid and mitigate these problems in their systems.

A recent effort towards shifting the focus from mitigating coding mistakes to finding and promoting the awareness of common
weaknesses in a security architecture was made by the IEEE Center for Secure Design [12]. This center released a list of the top 1035

most common architectural weaknesses. However, only a few examples of such security architecture weaknesses have so far been
obtained or published to help architects and developers to learn and avoid such security issues.

Therefore, in this work, we first present the Common Architectural Weakness Enumeration (CAWE), a catalog of known weak-
nesses rooted in the design or implementation of security tactics which can result in tactical vulnerabilities. The CAWE catalog was
built from an existing catalog of known types of software vulnerabilities1. Since this existing catalog did not distinguish between40

pure coding issues and weaknesses in security tactics, we categorized all known software weaknesses as tactic-related and non-tactic
related. This way, our CAWE catalog enumerates common weaknesses in a security architecture that can lead to tactical vulnerabil-
ities. In this work, we also use this catalog to study tactical vulnerabilities in three large-scale open source projects. The results of
this study not only show how tactical weaknesses in systems have created severe vulnerabilities, but also demonstrate the importance
of architecture-based approaches to avoid software vulnerabilities, and how the CAWE catalog can facilitate this process.45

1.1. Research Questions and Outcomes of this Study

In this paper, we investigate the following research questions.

RQ1: What types of tactical vulnerabilities exist?

Our goal in answering this question is to identify weaknesses in a security architecture that are the result of a flawed design
and/or implementation of security tactics (i.e. types of tactical vulnerabilities). We found 223 different known types of tactical
vulnerabilities, summarized in the CAWE catalog.50

RQ2: Which security tactics are more likely to have associated vulnerabilities?

For each security tactic, we investigated the potential types of vulnerabilities (i.e., weaknesses) that are rooted in their design
and/or implementation. This was to verify which tactics are at a higher risk of being improperly adopted. We observed that the
“Authorize Actors”, “Validate Inputs” and “Encrypt Data” tactics are subject to a higher number of weaknesses if not correctly
adopted. Therefore, these security tactics need to be implemented and tested more carefully.

1http://cwe.mitre.org/
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We also used the CAWE catalog to conduct an in-depth case study of tactical vulnerabilities across three large-scale open-source55

systems: Chromium, PHP, and Thunderbird. In this study, we retrieved and reviewed software artifacts of each system, such as
their source code, version control data, and their disclosed vulnerabilities in the National Vulnerability Database (NVD)2. We also
identified security tactics adopted in these systems and traced them to the source code. After analyzing these artifacts, we mapped
their vulnerabilities to security tactics to identify “tactical” and “non-tactical” vulnerabilities. This led to answering the following
research questions about understanding tactical vulnerabilities in real software systems:60

RQ3: What are the most common tactical vulnerability types in Chromium, PHP, and Thunderbird?

Using the data we collected, we scrutinized the types of tactical vulnerabilities across the three systems, and we found that
“Improper Input Validation” is by far the most common vulnerability type.

RQ4: What security tactics are most affected by tactical vulnerabilities in Chromium, PHP, and Thunderbird?

While the answer to RQ2 indicates the security tactics that are more likely to be incorrectly designed/implemented (i.e. that
have the highest amount of associated types of tactical vulnerabilities in the CAWE catalog), in this question, we propose to observe
to what extent such trend occurs in the three case studies. Thus, we studied which security tactics were most affected by tactical65

vulnerabilities in these projects. We found that “Validate Inputs”, “Authorize Actors” and “Limit Exposure” were the security tactics
most impacted by vulnerabilities in Chromium, PHP and Thunderbird.

RQ5: What are the root causes of the most frequently occurring types of tactical vulnerabilities in Chromium, PHP and
Thunderbird?

The tactical vulnerability types found in answering RQ3 indicate (at a high-level of abstraction) classes of vulnerabilities that
affected security tactics. Although these tactical vulnerability types provide clues about the nature of the problem, they are not
concrete enough for developers and architects to act upon. In this respect, for RQ5, we conducted a qualitative analysis of tactical70

vulnerabilities in the case studies and investigated the underlying root causes (i.e., the specific violations of tactics) of the most
reoccurring types of tactical vulnerabilities that we found in answering RQ3. The goal of this question is to use empirical data to
demonstrate the root causes of the tactical issues in the case studies along with their implications and potential fixes. All the findings
of this part of this research are grounded in empirical data collected from case studies.

1.2. Originality and Extension75

This work extends our previous publications [13, 14] in different ways. In our previous works, we established the CAWE
catalog [13], and studied tactical vulnerabilities in Chromium, PHP and Thunderbird to investigate their types, complexity to fix
and frequency of occurrence over time [14]. In this work, we extend the previous publications by conducting a detailed qualitative
analysis of the tactical vulnerabilities across Chromium, PHP and Thunderbird to identify their root causes (Section 5). Furthermore,
based on the study of vulnerability fixes by the original developers of these systems, we create actionable recommendations for80

software architects and developers for mitigating and preventing tactical vulnerabilities. This qualitative study was conducted over
a period of 6 months. The results are empirically grounded and are driven by an in-depth and manual analysis of 632 tactical
vulnerabilities and their fixes.

Thus, the contributions of this paper are:

• A description of the catalog of common types of tactic-related vulnerabilities (CAWE). The proposed CAWE catalog docu-85

ments the known type of vulnerabilities for each security tactic;

• An in-depth analysis of the relationship between software vulnerabilities and architectural security tactics. This allows us to
understand the architectural context of vulnerabilities instead of solely focusing on coding issues related to the management
of data structures and variables (e.g., buffer overflow/overread). Furthermore, it makes it possible to get insights about how
tactical vulnerabilities differ from other types of vulnerabilities (non-tactical), in terms of root causes, complexity to fix and90

how frequently they occur over the time;

• A detailed discussion of the root causes for tactical vulnerabilities. The benefit of fine-grained root causes is twofold (i) it
gives insights to developers and architects about how they can identify and mitigate these problems; (ii) it can help during
software testing, as the expected behavior and misbehavior are clearly specified.

2https://nvd.nist.gov/
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1.3. Organization of the Paper95

Section 2 briefly introduces vulnerability-related concepts and terms to ensure that the essence of the paper can be understood
by a broader audience, along with related work. Section 3 describes our CAWE catalog in details. Section 4 discusses how we used
the CAWE catalog to study tactical vulnerabilities in Chromium, PHP, and Thunderbird. Section 5 presents the qualitative analysis
of tactical vulnerability reports in order to identify their root causes. Section 6 elaborates on threats to the validity of this work, and
Section 7 concludes this paper.100

2. Background and Related Work

This section discusses the fundamental concepts and terminology used in our work. We first discuss software vulnerabilities data
and vulnerability databases (Section 2.1) and then we explain security tactics and tactical vulnerabilities in more detail (Section 2.2).
Finally, we discuss related work (Section 2.3).

2.1. Software Vulnerabilities105

Vulnerabilities in a software system are caused by defects that affect its intended security properties, and are typically tracked
in vulnerability databases. A well-known example is the National Vulnerability Database (NVD) which currently contains over
91,000 vulnerabilities that exist in a variety of software products. Each vulnerability recorded in the NVD is assigned a unique
CVE ID (Common Vulnerabilities and Exposure Identifier) and contains the details about the security problem. An example of a
vulnerability record in the NVD is shown below:110

CVE ID: CVE-2011-3189
Overview: The crypt function in PHP 5.3.7, when the MD5 hash type is used, returns the value of the salt argument instead of the hashed string, which might allow remote attackers
to bypass authentication via an arbitrary password, a different vulnerability than CVE-2011-2483.
References: https://bugs.php.net/bug.php?id=55439, [...]
Affected Versions: PHP 5.3.7
Vulnerability Type Cryptographic Issues (CWE-310)
[...]

As this excerpt shows, the NVD provides a short description of the problem and references for the vulnerability, i.e. a list of
links to other Web sites (such as issue tracking systems) that may contain more details about the security issue. It also specifies which
software releases were affected by the vulnerability (in this case, it was version 5.3.7 of PHP). Some of the CVE instances may also
provide a CWE tag that indicates the vulnerability type. This tag refers to an entry from the Common Weakness Enumeration
(CWE) dictionary, which enumerates common weaknesses in a software system that may lead to vulnerabilities. The vulnerability115

type denotes a family of security defects that share one or more aspect in common, such as a similar fault (root cause), failure
(consequence), or fix (repair) [15]. Thus, the CWE tag is used by the NVD as a way to classify vulnerabilities. It is important to
highlight that a weakness (or vulnerability type) is a class of problems in a software system that may introduce a security defect,
whereas a vulnerability is an instance of a weakness (an actual occurrence of the weakness).

2.2. Security Tactics and Tactical Vulnerabilities120

Architectural Security Tactics are means of achieving security properties through a series of inter-related design decisions [16].
They are the building blocks of a security architecture and provide reusable solutions for satisfying security requirements, even when
the system is under attack [3]. A comprehensive list of security tactics has been provided by Bass et al. [3] classified into the four
categories presented in Table 1.

Table 1: Security tactics and their definitions
Category Tactic Description

Identify Actors Identifies the external agents that provide inputs into the systems
Validate Inputs Sanitizes, neutralizes and validates any externally provided inputs to minimize malformed data from entering the

system and preventing code injection in the input data
Manage User Sessions Retains the information or status about each user and his/her access rights for the duration of multiple requests
Authenticate Actors Verifies the authenticity of actors (i.e. to check if the actor is indeed who it claims to be).
Authorize Actors Enforces that agents have the required permissions before performing certain operations, such as modifying data
Limit Access Limits the amount of resources that are accessed by actors, such as memory, network connections, CPU, etc.
Limit Exposure Minimizes the attack surface through designing the system with the least needed amount of entry points
Encrypt Data Maintains data confidentiality through use of encryption libraries
Separate Entities Places processes, resources or data entities in separate boundaries to minimize the impacts attacks

Resist Attacks

Change Default Settings Forces users to configure the system before use by changing the default (and potentially less secure) configuration.

Revoke Access In case of attacks, the system denies access to resources to everyone until the malicious behavior ends
Lock Computer Lockout mechanism that takes effect in case of multiple failed attempts to access a given resourceReact to Attacks
Inform Actors In case of malicious activities, the users/administrators or other entities that are in charge of the system are notified.

Detect Intrusion Monitors network traffic for detecting abnormal traffic patterns caused by intrusion attempts
Detect Service Denial Monitors incoming traffic for detecting Denial Of Services (DoS) attacks.
Verify Message Integrity Ensures integrity of data, such as messages, resource files, deployment files, and configuration files

Detect Attacks

Detect Message Delay Detects malicious behavior through observing the time spent on delivering messages. In case messages are taking
unexpected times to be received, the system may detect a potential data leakage.

Recover from Attacks Audit Logs user activities in order to identify attackers and modifications to the system
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While these security tactics provide a well-formed solution to address various security concerns, if they are not designed and125

implemented carefully, they can result in weaknesses in the security architecture [12]. We can classify these weaknesses into
omission, commission and realization weaknesses [13]:

• Omission weaknesses are caused by missing a security tactic when it is needed to satisfy a security requirement. An example
of an omission weakness is to exchange keys3 without authentication. In this example, the software architect missed the
need for authenticating entities before performing a key exchange to ensure that the sensitive information is transferred to a130

trustworthy actor. The lack of the “Authenticate Actors” tactic in this scenario allows attackers to perform man-in-the-middle
attacks, which can compromise the system’s confidentiality.

• Commission weaknesses refer to an incorrect choice of tactics which could result in undesirable consequences. An example
of this weakness is to rely on IP addresses for authentication, in which there is a list of trusted IP addresses that are used to
verify the authenticity of messages. While architects have made a design decision to satisfy the requirement of authentication135

of entities, the weakness in this design will enable attackers to bypass the authentication by forging a trusted IP address.

• Realization weaknesses occur when appropriate security tactics are adopted but are incorrectly implemented. For example,
a developer does not invalidate prior existing sessions before creating a new session while implementing the “Manage User
Sessions” tactic, resulting in a session fixation vulnerability. This enables an intruder to steal user sessions.

Based on the above classification of weaknesses, we define tactical vulnerabilities as: software vulnerabilities introduced in a140

system because of design and implementation issues related to architectural tactics. More specifically, these vulnerabilities occur
due to (i) a lack of security tactics (omission) in the application’s architecture; or (ii) adoption of less suitable security tactics for a
given design problem or context (commission); or (iii) an incorrect implementation of security tactic principles which results in an
incorrect transition from design to code (realization weakness).

These weaknesses in a security architecture may lead to vulnerabilities that can be successfully exploited by attackers. In this145

paper, we refer to these vulnerabilities as tactical vulnerabilities, as they are rooted in the design and/or implementation of security
tactics.

2.3. Related Work

There are many books and publications towards the identification and categorization of security tactics [3, 18, 19]. In our work
and the CAWE catalog however, we focused on documenting how these tactics could be compromised when incorrectly adopted.150

This helps spreading awareness for security problems rooted in the design/implementation of tactics.
The use of security knowledge bases as a resource to help developers and engineers in their daily activities has been previously

discussed in the research community. Security ontologies, which represent knowledge within the security domain, have been created
to support some activities, such as requirements engineering and quantitative risk analysis, but they did not introduce architectural
concepts [20]. Similar to a security ontology, Wu et al. [21] proposed semantic templates, which are a structured description of155

generic patterns of relationships between software components, faults and security consequences built on top of the CWE list and
the vulnerabilities reported in the NVD. However, these templates do not differentiate architectural concerns.

A similar effort towards understanding security problems from an architectural perspective was the IEEE Center For Secure
Design, which recently released a list of the top 10 design flaws [12], based on experiences in industry, academia, and government.
However, to this day the descriptions for each flaw are generic, there are not many details for mitigating these flaws, and they come160

from experience rather than empirical evidence. Thus, in this work, we extensively collected a list of software weaknesses to identify
the ones rooted in a security architecture and investigated their occurrences in existing systems.

Existing research in software architecture for security has mainly proposed techniques for facilitating the design of security
architecture [22], the analysis and evaluation of the existing security architecture [23, 24] as well as identifying potential threat-
s/vulnerabilities from the architecture [25, 26, 27] . While these works can aid architects in identifying existing threats and to165

appropriately adopt security patterns/tactics into a system, such activities may not be enough to avoid vulnerabilities, as the imple-
mentation of design decisions may be incorrect or erode over time.

To help avoid deterioration of security architecture during software maintenance, Taspolatoglu and Heinrich [28] described an
approach that extended architecture description languages to formally document security requirements. While this work recognized
that the implementation of security decisions may erode over time and result in vulnerabilities, unlike our work, it did not provide170

evidence on how frequently such problems occur and how complex they are to fix.
Ryoo et al. [29] evaluated to what extent security tactics are being used in open-source systems and whether there are dis-

crepancies between the original design and the actual implementation. Their findings suggested that developers are not strictly
implementing the original design envisioned by architects and that only a subset of tactics are being implemented in systems (such

3These keys are used to encrypt messages exchanged between two entities so that a secure communication can be established over an insecure channel [17].
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as “Encrypt Data”). While in our work we also analyzed the usage of security tactics in three software systems, our main goal was175

to investigate how vulnerabilities are caused by incorrect adoption of these tactics in the code.
Feng et al [1] investigated the relationship between design rule violation and vulnerabilities. They observed that source files that

contain a higher number of design rule violations are highly correlated to the presence of vulnerabilities, as well as high levels of
code churn when fixing such vulnerabilities. However, unlike our work, they investigated the files that contain modularity violations
against vulnerabilities, whereas we traced the vulnerabilities rooted in an improper implementation of security tactics and inspected180

what their root causes were, how they occurred over time, and what was the efforts to fix them.
In summary, despite the efforts from the research community to facilitate the design decisions for developing more secure

software and to study vulnerabilities from an architectural perspective, there is a gap for an in-depth study that addresses the problem
of investigating how security tactics are being incorrectly implemented in the code. Furthermore, to the best of our knowledge,
there is no previous work that provides evidence of what the common root causes of such incorrect implementations are and the185

corresponding efforts to fix them.

3. A Catalog of Tactical Vulnerability Types

We created the CAWE catalog through a systematic categorization of the CWE list 4, an existing dictionary of common types of
vulnerabilities. The CWE list contains about 1,000 entries, but it does not clearly distinguish tactical vulnerability types (i.e., security
issues rooted in the design and/or implementation of security tactics) from purely programming issues (such as buffer overflows or190

null-pointer dereferences). Thus, we systematically classified the entries in the CWE dictionary into coding bugs (i.e., not related to
security tactics) and tactic-related weaknesses. We also identified how these tactic-related weaknesses affect well-known security
tactics. As a result, the CAWE catalog is a view of the CWE dictionary, enumerating the subset of weaknesses from the CWE list
that corresponds to a weakness in a security architecture.

3.1. Creating the CAWE catalog195

To establish the CAWE catalog we performed the following steps:

1. We compiled an extensive list of security tactics published in the literature [3, 30]. For each security tactic, we extracted its
description and keywords that summarize the security tactic. This first step resulted in a list of 18 security tactics (see Table 1).

2. We retrieved all entries from the CWE dictionary. An entry in the CWE dictionary can be of four types: a View groups
weaknesses from a given perspective (e.g., types of errors); a Category aggregates entries based on a common attribute (e.g.,200

shared environment (J2EE, .NET), functional area (authentication, cryptography), relevant resources); a Weakness corresponds
to an actual type of security problem; a Compound Element describes security problems due to the occurrence of other
weaknesses in a time sequence. Since View and Category entries group other weaknesses rather than representing software
weaknesses, they are not included in our analysis. This way, out of the 1,004 entries in version 2.9 of the CWE dictionary,
we retrieved the subset of 727 entries of type Weakness or Compound Elements. For each Weakness and Compound Element205

type, the CWE dictionary provides information such as a description, mitigation techniques, common consequences, code
examples, etc 5.

3. We searched the 727 CWE entries for the keywords related to the 18 security tactics identified in the first step. This search
resulted in a list of potential connections between security tactics and CWE entries.

4. We manually analyzed all provided data for all 727 entries (i.e., their descriptions, mitigation techniques, consequences, attack210

patterns and time of introduction) to confirm whether these potential connections indeed existed and verified whether there
were not any missing connections. During this manual analysis, we decomposed each CWE into three dimensions: its root
cause (identified based on the entry’s description and time of introduction), its failure (observed from the entry’s enumerated
consequences), its fix (identified from the described mitigation techniques). As defined in Section 2, the criteria to consider a
CWE entry to be a tactic-related weakness is that the weakness is either caused by (i) a lack of a design decision (omission);215

or (ii) an incorrect choice of security tactics which results in “bypasses”, i.e., an attacker being able to bypass the security
mechanism and breach into the system (commission) or (iii) an incorrect transition from tactic design to implementation in
the code (realization weakness). If a CWE entry matched any of these conditions, it was considered to be rooted in the design
and/or implementation of a security tactic and classified as a tactic-related weakness. We annotated each of these tactic-
related weaknesses with (i) the security tactic affected by the weakness and (ii) the type of impact (commission, omission or220

realization weakness).

4http://cwe.mitre.org/
5The complete information provided in the CWE dictionary is documented on MITRE’s Website: https://cwe.mitre.org/data/xsd/cwe_schema_

v5.4.2.xsd
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To illustrate this systematic process, consider CWE-354 (“Improper Validation of Integrity Check Value”). It contains some of
the keywords related to the security tactic “Verify Message Integrity”. Thus, after performing the third step, (the keyword-based
search), this CWE was considered to be potentially related to the “Verify Message Integrity” tactic because it contained keywords
related to the tactic. When we subsequently manually inspected this CWE instance, we found that this type of problem is caused225

by an incorrect verification of the checksums 6 of messages. This leads to the software system to potentially accept corrupted or
intentionally modified messages. From this inspection, we considered this CWE entry to be a “realization weakness” affecting the
“Verify Message Integrity” tactic because it occurs due to an incorrect implementation of the tactic (as described in the mitigation
section, it implies that the system handles a message protocol that supports message integrity verification, but the application failed
to correctly implement such mechanism).230

Since the keyword-based search may not show all the potential connections between CWE instances and tactics, it is important
to highlight that we also carefully inspected all entries which were not identified through the keyword-based search. In particular, if
a CWE was tagged with “Architecture and Design” as the time of when this weakness is introduced in a system, we inspected if the
CWE discussed that the issue occurred because of a lack of a security tactic. For instance, the CWE-306 (“Missing Authentication
for Critical Function”) is caused by the absence of adopting the “Authenticate Actors” tactic (i.e., an “omission weakness”).235

To minimize inherent biases in this manual analysis, four individuals worked independently over all these 727 entries to catego-
rize them. Once they had completed their analysis, results were double-checked. For the entries with disagreements (84 in total),
they discussed their rationale and reached a consensus of what would be the appropriate classification.

3.2. Overview of the CAWE Catalog

(a) (b)

Figure 1: (a) Home page of MITRE’s list of software weaknesses (b) The CAWE catalog integrated into MITRE’s Website as a View
As shown in Figure 1(a), the CAWE catalog is integrated intro MITRE’s list of software weaknesses as a View. This view is240

named as “Architectural Concepts” and was assigned an ID equals to 1008. The CAWE view is publicly accessible through the
following link: http://cwe.mitre.org/.When users navigate directly to the CAWE View’s URL or click on the “View by
Architectural Concepts” button in Figure 1(a), it takes them to the page shown in Figure 1(b). This Web page shows the list of
affected security tactics (collapsed). When these tactics are expanded it shows the associated tactical weaknesses.

Currently, our CAWE catalog has 223 tactic-related weaknesses categorized based on 11 security tactics. The CAWE catalog245

also has a category called “Cross-Cutting”, which encompasses weaknesses that can impact multiple security tactics (see category
#1012 in Figure 1(b)). An example of a tactic-related weakness is presented in Figure 2. This weakness leads to a bypass of the
“Authenticate Actors” tactic caused by leveraging IP addresses to verify the authenticity of actors (a commission weakness).

It is important to highlight that although MITRE’s Website had a view that encompasses “mistakes made during the design
and/or architecture phase”7 our definition and purposes for the CAWE view are slightly broader. The goal of the CAWE view is250

to promote the awareness of mistakes related to the security architecture itself (as an artifact). In other words, weaknesses are

6Checksums are extra data that is attached to messages to detect errors and modifications in the message.
7“CWE-701: Weaknesses Introduced During Design”: http://cwe.mitre.org/data/definitions/701.html
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Figure 2: CWE-291 “Reliance on IP Address for Authentication” with the Added Metadata from our Work (the Impact Type and affected Tactic)

then either omission/commission (that occur during the design process) or realization (that occur during the transition of a correct
architecture to source code).

3.3. Using the CAWE catalog to Answer RQ1 and RQ2

Information Exposure Through Self-generated Error Message

Limit

Exposure

Information Exposure Through Externally-generated Error Message

Information Exposure Through Process Environment

Information Exposure Through Server Error Message

Inclusion of Functionality from Untrusted Control Sphere

J2EE Misconfiguration: Insufficient Session-ID Length

Manage User 

Sessions

Session Fixation

Exposure of Data Element to Wrong Session

J2EE Bad Practices: Non-serializable Object Stored in Session

Insufficient Session Expiration
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Figure 3: High-Level Overview of the CAWE Catalog [13]

3.3.1. RQ1: Types of Tactical Vulnerabilities255

From the CAWE catalog, we observed that among the 727 software weaknesses we inspected from the CWE dictionary, 223
are tactic-related weaknesses, i.e., corresponding to different types of vulnerabilities rooted in the design/implementation of security
tactics. Figure 3 presents a high-level hierarchical view of these types of tactical vulnerabilities from the CAWE catalog per tactic.
Note that some tactic-related weaknesses are children of other entries, but for simplicity reasons, this figure only shows the higher-
level entries.260

Key Finding for RQ1:

– There are 223 different types of tactical vulnerabilities.
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3.3.2. RQ2: Security Tactics Likely to have Associated Vulnerabilities
To answer this question, we computed the total number of tactical weaknesses associated with each security tactic in the CAWE

catalog. This allows us to understand which security tactics are more likely to be incorrectly adopted (since it has more ways to
be flawed). Table 2 shows the number of tactical vulnerabilities types relevant to each security tactic along with a breakdown by
the impact type (omission, commission and realization weaknesses). This table shows that the “Authorize Actors” tactic, which is265

used to ensure that only legitimate users can access data and/or resources, is subject to a higher number of known weaknesses if
not implemented correctly (38 realization weaknesses). Therefore, it needs to be implemented and tested more carefully. Similarly,
tactics “Validate Inputs” and “Encrypt Data” need to be implemented carefully to avoid incorrect assumptions during their design
and/or implementation. We also found 9 tactical weaknesses that are cross-cutting, i.e., that affect multiple security tactics.

Table 2: Total Number of Vulnerabilities per Security Tactics
Security Tactic # CAWEs Realization Omission Commission
Audit 6 3 1 2
Authenticate Actors 29 12 2 15
Authorize Actors 60 38 16 6
Cross Cutting 9 3 3 3
Encrypt Data 38 18 13 7
Identify Actors 12 10 2 0
Limit Access 8 7 0 1
Limit Exposure 6 6 0 0
Lock Computer 1 0 0 1
Manage User Sessions 6 5 0 1
Validate Inputs 39 35 4 0
Verify Message Integrity 10 6 4 0

Key Finding for RQ2:

– Tactics “Authorize Actors”, “Validate Inputs” and “Encrypt Data” are at a higher risk of being incorrectly adopted in a
software system.

4. Empirical Investigation of Tactical Vulnerabilities in Real Software Systems270

After establishing the CAWE catalog, which enumerates common types of tactical vulnerabilities, we investigated the occur-
rence of these weaknesses in real systems. We conducted an in-depth case study with three cases [31] based on guidelines for
industrially-based multiple-case studies [32] (where each of the three systems is one case). The unit of analysis in our study was
a software project. In each case (Chromium, PHP, and Thunderbird), we investigated RQ3 and RQ4 (what are the most common
tactical vulnerability types on Chromium, PHP, and Thunderbird, and what security tactics are mostly affected by vulnerabilities in275

Chromium, PHP, and Thunderbird).

4.1. Case Selection
The criteria we used for selecting cases for our study were that the systems should be (i) widely adopted by a large number

of users, (ii) among the top 50 software projects with the highest number of vulnerabilities [33], (iii) implementing a wide range
of security tactics, (iv) using an issue tracking system for managing and fixing defects, and (v) from different software domains.280

Through these criteria, we ensured that the selected projects provided a rich set of artifacts regarding the software development
activities conducted (to have access to all necessary data for our study), security tactics used, reported vulnerabilities, and fixes to
vulnerabilities. Based on these criteria, we selected Chromium 8 (a Web browser), Mozilla Thunderbird 9 (an email and news
feed client) and PHP 10 (the interpreter of the PHP programming language) as case studies. These projects are diverse in size, age,
and domain, but similar with respect to their underlying programming language (they were mostly written in C/C++), as shown in285

Table 3.

4.2. Data Collection and Analysis
We performed the following steps: (i) identification of the security tactics adopted in each project (Section 4.2.1); (ii) retrieval of

each project’s disclosed vulnerabilities in the NVD (Section 4.2.2); (iii) classification of vulnerabilities as tactical and non-tactical
(Section 4.2.3). To help the reader understand our analysis process, we show the collected artifacts and their relationships in Figure 4.290

8http://www.chromium.org/
9http://mozilla.org/thunderbird/

10http://php.net/
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Table 3: Details about the studied systems (statistics collected as of January 2017).
Chromium PHP Thunderbird

Size (LOC) >14 MLOC >4 MLOC >1 MLOC
# of major releases 56 18 22
Total contributors 5,223 423 889
Core contributors 1904 114 83
Age 9 years - started in 2008 22 years - started in 1994 18 years - started in 1998
Release cycle 6 weeks Yearly 6 weeks
Domain Web browser Script language for web apps Email, calendar, chat client
Language(s) Mostly C++ Mostly C Mostly C++
Vulnerabilities 1,380 531 705
Number of users ~1 billion ~244 millions ~9 millions
Rank 4th 23rd 15th

Figure 4: Data Extraction Information Model

4.2.1. Identifying Security Tactics in each Project
The first step involved identifying the security tactics used in the three projects. To ensure the accuracy of the identifications, we

performed the following complementary activities:

• We reviewed the available literature and technical documentation for each project [34] to look for any references to specific
security tactics and manually checked if these tactics occurred in the code.295

• We manually browsed through the source files in each project to identify tactic-related files

• We searched tactic-related keywords (e.g. “authenticate”) on the source code of the projects.

• We used a previously developed technique that automatically reverse-engineers architectural tactics from source code [35, 30].

The results of these four activities were merged to document the set of tactics used in each project. We then obtained feedback from
developers involved in these projects if they agree with the identified tactics: For Chromium, we received feedback from the lead of300

the security team, and for PHP and Thunderbird, we obtained feedback from two developers who contributed to the implementation
of the security tactics. The list of identified security tactics for each project is shown in Table 4.

Table 4: Security Tactics in Chromium, PHP and Thunderbird
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Chromium * * * * * * * * * * * * * *
PHP * * * * * * * *

Thunderbird * * * * * * * * * *
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4.2.2. Extracting Disclosed Vulnerabilities for each Project
We retrieved all CVEs for the three systems from the NVD. As shown in Figure 4, these CVEs are the starting point to collect

the required artifacts. Thus, to ensure the accuracy and completeness of our data, we perform the following steps:305

• Completeness check: Even though the NVD can provide a variety of information for each vulnerability, not all CVE instances
provide the data we need to conduct our study (e.g., patches that were released to fix the vulnerability). Hence, we manually
analyzed each collected CVE instance to check whether the corresponding entries in the issue tracking system of the three
studied projects were included in the NVD. In case NVD failed to provide this information, we searched the CVE ID in the
project issue tracking system to verify that each CVE was indeed acknowledged by the developers, fixed and that the fix was310

released. This manual analysis was conducted by three researchers over a time span of a year. As a result, we obtained a
total of 2,386 CVEs spanning across the lifetimes of these projects until January 2016. From these vulnerabilities, 1,252 were
related to the Chromium project since 2008, 430 were associated with the PHP project published since 1997, and 704 were in
the Thunderbird project, reported since 2002.

• Removal of invalid CVEs: While manually inspecting the CVEs in the previous step, we discarded invalid vulnerabilities,315

i.e., those CVE instances which were labeled as deprecated or as a duplicate of another CVE in the NVD, or CVEs that were
not related to Chromium, PHP or Thunderbird (including applications written in PHP rather than in PHP itself). Furthermore,
we discarded CVEs for which we could not identify a corresponding entry in the issue tracking system or when the issue was
declared private in the issue tracking system, i.e., there were internal restrictions that prevented issues from being shown to
the general public.320

• Tracing CVEs to patches: For each CVE, we collected the corresponding defect entry in the project’s Issue Tracking System.
Based on this, we obtained the patch that was released to fix the vulnerability as well as the source files that were modified to
fix the vulnerability.

4.2.3. Identification of Tactical and Non-Tactical Vulnerabilities
Next, we used a bottom-up approach and a top-down approach to identify tactical vulnerabilities in the three systems.325

In the bottom-up approach, we manually reviewed all CVE reports of the studied projects to classify them as tactical or non-
tactical. To reduce effects of bias on this classification, we performed a peer evaluation by two developers (one with eight years of
experience in software architecture and security and the other one with three years of experience in this field). These subject matter
experts inspected all the collected CVEs and provided a rationale for how they classified CVE reports. To ensure consistency, each
expert was provided with instructions for classifying CVEs, as shown in Table 5. The provided instructions ask these experts to read330

the CVE reports and its associated artifacts in order to identify where the issue is located and its root causes and provide a rationale
and evidence for tactical vulnerabilities. It is important to highlight that Table 5 merely provide examples of low-level and tactical
problems, but these examples are not meant to be exhaustive. Both subject matter experts also conducted detailed code reviews to
classify the CVEs. We provided the tactical files (i.e., source files that implement tactics) in these projects and a matrix indicating
the overlap of CVEs and tactical files. As described in Section 4.2.1, we reverse-engineered security tactics in the source code.335

Once each subject matter expert had finished their classification, disagreements were discussed (based on each person’s rationale)
and resolved.

In the top down approach, we used our CAWE catalog (Section 3) as a gold standard to differentiate tactical and non-tactical
vulnerabilities across the three systems. As shown in Figure 4, each CVE may have a CWE tag that can provide clues whether the
problem is related to a security tactic or not. Thus, we use these tags to automatically classify CVEs as tactical or non-tactical (i.e., if340

the vulnerability’s CWE tag is in our CAWE catalog, the vulnerability is considered as tactical). However, for some vulnerabilities,
the NVD did not provide a CWE tag 11. In this case, we have used the links between Security Tactics, Source Files and CVEs and
reviewed the content of these artifacts to tag the CVE with the most appropriate entry in our gold standard (see Figure 4).

Finally, we consolidated the results of the bottom-up and top-down classifications and peer-reviewed the cases for which we
observed mismatches between the bottom-up and top-down approach. There was a 93.3% agreement in the classification between345

bottom-up and top-down for Thunderbird, 90.2% in PHP and 88.3% in Chromium. These disagreements occurred mainly because
the CWE tag provided to CVEs in the NVD does not have a consistent meaning: it may indicate the specific root cause of the vulner-
ability (e.g “CWE-798 Use of Hard-code Credentials”) or describe the consequence of a vulnerability (e.g, “CWE-200 Information
Leak / Disclosure”), or it is at a higher level of abstraction (e.g., “CWE-17 Code” which describes vulnerabilities introduced during
coding), thereby it introduces mistakes in the second step of this top-down approach. In a group review session, we resolved the350

disagreements and decided which CVEs were tactical or non-tactical.

11There were 182 CVEs in Chromium, 160 in PHP and 187 in Thunderbird without CWE tags, which corresponds to 14.5%, 37.2% and 26.6% of their CVEs,
respectively.
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Table 5: Instructions given to the experts to classify CVEs into tactical and non-tactical
Instructions

Steps: (i) Read the CVE description, (ii) Check the modified code: comments, changed function/method/class, (iii) Read
the bug tracking discussion (iv) Read the commit message.
Examples of low level issues:
- Solely coding mistake
- An integer overflow / underflow
- Use of a pointer after free
- Incorrect calculations of buffer sizes
Examples of tactical issues:
- Missing critical step in authentication tactic
- Improper handling of insufficient privileges in authorization tactic
- Errors in tactical code and principles of the tactic.
- CVE violates a design decision made by the developer.
- Missing the encryption of sensitive data.

Answer Sheet
Is the error very low level? � Yes � No
Is the source code changed implementing any security mechanisms for Resisting, Detecting, Reacting
to or Recovering from a potential attack?

� Yes � No

Is CVE in a tactical file? (Yes: Investigate) � Yes � No
Is CVE impacting the tactic? � Yes � No
What is the name of impacted tactic?
Your decision: Tactical (Yes) / Non-tactical (No) � Yes � No
Describe your rationale and provide evidence:

4.2.4. Overview of our Vulnerability Dataset
Table 6 shows an overview of our vulnerability dataset, indicating the total number of collected vulnerabilities (# CVEs), the

number of instances that were discarded (as explained in Section 4.2.3), the remaining CVEs that we analyzed and how many
tactical and non-tactical CVEs we found in each system. From the vulnerabilities we analyzed in our dataset, we observed that355

42.5% (403 out of 949 CVEs), 38.7% (63 out of 163 CVEs) and 38.2% (255 out of 668 CVEs) were tactical vulnerabilities in
Chromium, PHP, and Thunderbird, respectively. From this dataset, we can observe that while these systems have implemented
many security tactics to achieve security by design, a considerable number of reported vulnerabilities in these systems were due to
incorrect implementations of these tactics.

Table 6: Overview of the Vulnerability Dataset
Project #CVEs #Discarded #Analyzed #Tactical #Non-Tactical

Chromium 1252 303 949 403 546
PHP 430 267 163 63 100

Thunderbird 704 36 668 255 413

4.3. Using the Dataset to Answer our Research Questions360

From this analysis we obtained a dataset which contains, for each vulnerability, its CVE ID, its Description, the Affected Releases,
its type (i.e., CWE tag), associated tactic (for tactical vulnerabilities) and the Patch that indicates the source files that were changed
to fix the vulnerability as well as the total number of lines that were added/removed from these files. We used these collected artifacts
as follows to answer RQ3 (Section 4.3.1) and RQ4 (Section 4.3.2).

4.3.1. RQ3: Most Common Types of Tactical Vulnerabilities in the Case Studies365

To answer this question, we identified the most frequently occurring types of tactical CVEs in each project and their underlying
security tactics. Table 7 lists the tactical vulnerability types in each of the three studied systems, the related architecture tactics, as
well as the total number of CVEs caused by the given vulnerability type. The first result of note is that Improper Input Validation
(CWE-20) was the most common vulnerability type in both PHP and Chromium, while Improper Access Control (CWE-284) was the
most reoccurring vulnerability type in Thunderbird. Moreover, PHP’s and Chromium’s second most common vulnerability type was370

the Inclusion of Functionality from Untrusted Control Sphere (CWE-829), which is about reusing/importing vulnerable third-party
functionality.

Key findings for RQ3:
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Table 7: Most Common Tactical Vulnerability Types in the Studied Projects
Security Tactic Vulnerability Type Chromium PHP Thund. Total

Validate Inputs CWE-20 Improper Input Validation 131 23 46 200

Limit Exposure CWE-829 Inclusion of Functionality from Untrusted Control Sphere 106 8 7 121

Authorize Actors CWE-284 Improper Access Control 35 – 51 86

Validate Inputs CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’) 12 1 31 44

Identify Actors CWE-346 Origin Validation Error 21 – 17 38

Validate Inputs CWE-94 Improper Control of Generation of Code (’Code Injection’) 5 1 30 36

Authorize Actors CWE-274 Improper Handling of Insufficient Privileges 19 – – 19

Identify Actors CWE-295 Improper Certificate Validation 5 – 11 16

Authorize Actors CWE-269 Improper Privilege Management 3 – 8 11

Authenticate Actors CWE-287 Improper Authentication 7 – 3 10

Authorize Actors CWE-426 Untrusted Search Path 2 – 8 10

Authorize Actors CWE-280 Improper Handling of Insufficient Permissions or Privileges 2 6 – 8

Authorize Actors CWE-266 Incorrect Privilege Assignment 1 – 7 8

Limit Access CWE-73 External Control of File Name or Path 3 4 – 7

Limit Access CWE-250 Execution with Unnecessary Privileges 4 1 – 5

Authorize Actors CWE-862 Missing Authorization 2 2 1 5

Validate Inputs CWE-59 Improper Link Resolution Before File Access (’Link Following’) – 2 1 3

Validate Inputs CWE-77 Improper Neutralization of Special Elements used in a Command (’Command Injection’) – 2 – 2

Validate Inputs CWE-89 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’) – 2 – 2

Validate Inputs CWE-74 Improp. Neutraliz. of Spec. Elements in Output Used by a Downstream Component – 1 – 1

– Improper Input Validation (CWE-20) and Improper Access Control (CWE-284) are the most occurring vulnerability types
in Chromium, PHP and Thunderbird.

– Security of studied projects was compromised by reusing or importing vulnerable versions of third-party libraries. In the
case of Chromium such vulnerabilities occurred 106 times, while in Thunderbird and PHP, 7 and 8 times, respectively.

4.3.2. RQ4: Security Tactics Mostly Affected by Vulnerabilities in the Case Studies
To answer this question, we identified the tactics associated with the CWE tags of the vulnerabilities across the three projects.

This way, we computed how many times each security tactic was incorrectly adopted in the three systems. Figure 5 shows the375

number of CVEs per tactic. Most of the tactical issues in the studied systems are related to a failed mechanism that validates inputs
consistently and correctly, i.e., the tactic “Validate Inputs” (CWE-20, CWE-59, CWE-74, CWE-77, CWE-79, CWE-89, and CWE-
94 in Table 7). Failing to validate user inputs can lead to a variety of consequences, such as crashes (denial of service) and leakage of
sensitive information. We also observe that vulnerabilities related to the tactic “Authorize Actors” (CWE-266, CWE-269, CWE-274,
CWE-284, CWE-280, CWE-426, and CWE-862 in Table 7) are common among the three systems.380

Figure 5: Total number of vulnerabilities (CVEs) per security tactic for each system

Key findings for RQ4:

– “Validate Inputs” and ”Authorize Actors” are common tactics affected by tactical vulnerabilities in Chromium, PHP and
Thunderbird.

5. Vulnerability Root Cause Analysis for Chromium, Thunderbird and PHP

To answer RQ5, we performed a qualitative analysis of the vulnerability reports to identify the root causes of vulnerabilities.
We focused on the root causes of the top 20 most frequent types of tactical vulnerabilities (see Table 7). In the next subsections, we

13



explain the qualitative data analysis we performed (Section 5.1) and the root causes of each tactical vulnerability type (Section 5.2).

5.1. Data Analysis to Identify Vulnerability Root Causes from Vulnerability Reports385

We performed a qualitative analysis [36] of 632 vulnerability reports and their associated artifacts to identify the root causes of
the most reoccurring tactical vulnerability types (listed in Table 7). This analysis comprised the following steps:

1. For each vulnerability, we studied the following artifacts: (i) vulnerability report; (ii) each comment in the issue tracking
system made by developers and/or the reporter, (iii) the modified source code(s) in the patch released to fix the vulnerability,
(iv) the patch’s commit message, and (v) design documents [34, 37, 38, 39, 40, 41]. Through analyzing these artifacts, we390

filled out a template for each vulnerability. The template captured information regarding the context in which the vulnerability
occurred, a brief description of the problem, including an explanation of the root cause and the consequences as well as the
solution implemented by developers to fix the problem.

2. Two of the authors coded [36] vulnerability reports. During this coding process, they iteratively reviewed the context and
problems of the vulnerabilities as captured in the previous step and annotated each vulnerability with a code, which indicates395

the root cause of the vulnerability. These coders also provided their rationale behind the decision to label the vulnerability
with a specific code. As they performed the analysis, they either annotated the vulnerability reports (CVEs) with existing
codes or created new codes that emerged from the data (if the existing codes were not suitable for the CVE being analyzed).
For each created code, the authors also added its meaning into a “codebook” [36]. This codebook contained a summary of
the root cause indicated by the code, associated consequences which indicated how the vulnerability affected the security400

mechanisms of these systems.

3. After coding all the CVEs, the last step was to refine the codebook. The goal of this step was to merge or split codes when
needed to ensure the same level of granularity of these codes.

As a result of this rigorous analysis of CVEs, we obtained a “codebook” [36] which contains a list of codes per tactical vulnera-
bility type and their corresponding meaning.405

5.2. RQ5: Root Causes of the Most Common Tactical Vulnerability

Using the data from our qualitative analysis, we elaborate on the specific root causes that lead to tactical vulnerabilities in order
to answer RQ5. For each root cause, we provide an example, the impact of the associated vulnerabilities on the system’s security
as well as a brief explanation of how these vulnerabilities were mitigated. For tactical vulnerabilities classified as an “omission”
or “commission”, our root cause analysis indicates which aspects of the associated security tactics were not chosen (omission) or410

incorrectly designed during the software design process (commission).
It is important to highlight that the majority of tactical vulnerability types are cases of “realization” weaknesses (see Table 7).

As such, most of our root causes occurred during the implementation/maintenance of these tactics.

Identify Actors

CWE-346 Origin 
Validation Errors

« Realization Weakness »

Rudimentary Verification of the Origin

Not Invoking the Procedures that Performs the Security Check of Origins

Incorrect Transfer of Origin Information

CWE-295 Improper 
Certificate Validation
« Realization Weakness »

Incorrect Validation of the Certificate’s Hostname or IP Address

Accepting Certificates Signed with Weak Hash Algorithms

Incorrect Certificate Parsing

Improperly Handling Certificate Encoding

Lack of Mitigation Procedures to Deal with Invalid Certificates

« Security Tactic »

« Vulnerability Types » « Root Causes »

Figure 6: Root Cause Analysis of Tactical Vulnerabilities related to the “Identify Actors” Tactic

5.2.1. “Identify Actors” Tactic
This tactic was affected by Origin Validation Errors (CWE-346) and Improper Certificate Validation (CWE-295) in Chromium415

and Thunderbird (Figure 6). These tactical vulnerabilities occurred in these projects as follows:

• CWE-346 Origin Validation Errors: This tactical vulnerability type refers to classes of problems in which the application
fails to correctly verify the validity of the source of data or communication. In Chromium and Thunderbird, this tactical
vulnerability type occurred due to problems related with violations of the Same-Origin Policy (SOP) [42] and the Content
Security Policy (CSP) [43], two complementary security policies commonly applied in Web applications to implement the420

“Identify Actors” tactic. In both policies, an origin of a Web resource is defined by the scheme, host and port of its URL [42].
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On one hand, the SOP is used to enforce that documents/scripts loaded from different sources (i.e. origins) do not interact
with each other. This means that scripts/documents can only access data from another document or script if they are from the
same origin. On the other hand, the CSP is a complementary security control that allows Web servers to specify a whitelist
of origins, which indicates the only sources of resources (e.g. scripts, HTML documents, etc) that should be trusted. This425

way, resources from an origin that does not match the list of trusted origins in the whitelist should be ignored by the client
application. Violations of these two policies occurred due to:

– Rudimentary Verification of the Origin: the application has an ad-hoc implementation of the policy (SOP or CSP) which
incorrectly checks the origin of a request.
Example: According to the CSP specification [43], if the policy’s hostname starts with a wildcard (e.g., “*.exam-430

ple.com”), then the system should only match subdomains (e.g., “a.example.com” or “b.example.com”) but not the
domain (i.e., “example.com). However, in Chromium’s CVE-2015-6785 when the host part of a content security policy
started with a wildcard (e.g., “*.domain.com”) the system was mistakenly matching this host to resources originated
from “domain.com”, violating the expected behavior of the CSP.
Impact: Although both systems applied the CSP and SOP as a mechanism to identify actors providing input to the sys-435

tem, the implementation of CSP and SOP failed to guarantee the basic premise that the identification of these actors is
precise. It results in a bypass of the tactic’s protection mechanism, which can be used by attackers to steal data (e.g.
authentication tokens) or inject code.
Recommendations: Developers should strictly follow existing specifications (e.g. [43, 42]) when implementing the
CSP/SOP as means of adopting the “Identify Actors” tactic. In particular, having a centralized component that performs440

such policy enforcements minimizes the risk of inconsistent implementations. In fact, we observed multiple CVEs in
which developers discussed deeper refactorings that involved moving the scattered origin checks to a central point to
consistently enforce these policies concerning cross-origin requests.

– Not Invoking the Procedures that Perform the Security Check of Origins: the application does not invoke the necessary
origin check procedures during a cross-origin request to load, execute or access a resource.445

Examples: In Thunderbird’s CVE-2012-4192, the SOP implementation was not identifying the request origin before
granting access to the properties of the location object, violating the Same-Origin Policy. This CVE was due to
a regression issue: developers removed the calls to the functions that perform origin checks while fixing an unrelated
defect. As another example, in Chromium’s CVE-2015-1236 developers did not understand the expected behavior in a
cross-origin request to read off-line audio samples, so they have not invoked the routines that would enforce the Same-450

Origin Policy in this case. This Chromium vulnerability allowed attackers to read an audio file (or a conversion of that
file to an audio buffer) and to send the read data to a remote location.
Impact: This flawed tactic implementation does not check the identity of the actors performing a request, leading to a
policy-bypass. Attackers can therefore compromise the system’s confidentiality and integrity (being able to read and/or
modify data).455

Recommendations: Developers should call the origin check functions in all the components that handle cross-origin
requests.

– Incorrect Transfer of Origin Information: The application does not transmit origin information from one process to the
forked process or from one object to another.
Example: In the case of Web page redirects, Thunderbird’s Same-Origin Policy implementation did not expose the final460

URL to the component performing the origin check (CVE-2008-5507). It allowed remote attackers to bypass the policy
using JavaScript to redirect the user to another domain (target of the attack).
Impact: To apply both the SOP and CSP correctly when identifying actors, an important assumption is that the informa-
tion about the origin is always available when the check needs to be performed. Otherwise, it results in a policy bypass,
in which unauthorized actors would access the system’s resources.465

Recommendations: The origin information needs to be passed (if needed) to child processes and/or objects. This is
particularly important in a chain of redirects, in which the origin check should be based on the target URL (final URL)
and not the original URL.

• CWE-295 Improper Certificate Validation: A common security mechanism across Web systems is to use digital certificates
to check the identity of the actors that interact with the system. Each certificate contains multiple fields, such as an expiration470

date, common name (CN) and the certification authority (CA) that issued the certificate. One crucial aspect of using a
certificate is to check whether it is valid. However, both Chromium and Thunderbird had flaws in the implementation of their
certificate validation which were caused by:

– Incorrect Validation of the Certificate’s Hostname or IP Address: The system’s implementation of the certificate valida-
tion only checked a portion of the hostname or IP address of a certificate to verify whether the certificate was issued to475

the entity performing the request.
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Example: In Thunderbird’s CVE-2010-3170, a certificate with a CN attribute equals to “*.168.3.48” was accepted as a
valid certificate when it should have been treated as invalid because IP addresses in the CN attribute should not have
wildcards (*).
Impact: The hostname/IP address in a certificate corresponds to the identity of the actor requesting for a connection. Im-480

plementing an incorrect hostname/IP address matching allows remote attackers to spoof trusted certificates and bypass
the security tactic.
Recommendations: The implementation of the certificate validation should strictly follow existing guidelines [44] for
matching the CN and subjectAltNames attributes before accepting the connection associated with the certificate.

– Accepting Certificates Signed with Weak Hash Algorithms: Occurs when the implemented certificate validation accepts485

certificates that were signed using less secure hashing algorithms.
Example: Chromium’s certificate validation routine accepted SSL connections to a Web site that provided an X.509
certificate signed with either the MD2 or MD4 hashing algorithms, which are not strong enough (CVE-2009-2973).
Impact: It exposes the application to man-in-the-middle attacks.
Recommendations: Developers should enforce and test that less secure hash algorithms (i.e., those that are at a higher risk490

of collision attacks) are not accepted by the certificate validation routine. This way, the application rejects connections
from an actor that provides a certificate signed with a less secure algorithm.

– Incorrect Certificate Parsing: Occurs when the implemented certificate validation component incorrectly parses the at-
tribute values within a certificate.
Example: Thunderbird did not properly handle extra data in a signature that uses an RSA key with exponent 3, which495

allowed remote attackers to forge signatures for SSL/TLS and email certificates (CVE-2006-5462).
Impact: An incorrect certificate parsing leads to wrong values in the certificate’s attributes, affecting the certification
validation routine. It results in crashes or misleading the application to accept connections from actors that provided
malformed certificates.
Recommendations: Each certificate may be provided in different file formats. Therefore, the tactic’s implementation500

should have dedicated parsers implemented according to existing format specifications for each certificate type sup-
ported by the application.

– Improperly Handling Certificate Encoding: when certificates are used to identify actors, it is important to correctly recog-
nize the encoding of the certificate, so that the actor information can be properly extracted from the certificate. However,
we found instances in which the software’s implementation does not correctly handle the certificate encoding.505

Example: In CVE-2014-1559 (Thunderbird), the tactic’s implementation assumed that incoming X.509 certificates were
encoded using UTF-8 if they were not in ASCII.
Impact: An implementation that assumes the underlying encoding of certificates without actually checking the encoding
can lead to incorrect parsing of the certificate. A malicious actor could leverage this vulnerability to spoof their identity.
Recommendations: Certificate attributes may be encoded using different character sets (charsets). Thus, the imple-510

mented certificate validation routines should never expect certificates to be provided using a specific encoding. Instead,
the implemented routine(s) must always infer the actual encoding used from the certificate attributes.

– Lack of Mitigating Procedures to Deal with Invalid Certificates: the tactic’s implementation correctly parses and vali-
dates certificates, but it fails to properly handle invalid certificates.
Example: In CVE-2014-7948 (Chromium), the certificate validation implementation did not correctly handle the error515

scenario (i.e., when the actor provides an invalid certificate). It resulted in Chromium caching resources from Websites
with invalid certificates.
Impact: It exposes the application to successful man-in-the-middle attacks.
Recommendations: To avoid this problem, the certificate validation routine can throw an exception in case of invalid
certificates. This exception is later captured in the code and prevents the attacker to bypass the security tactic.520

5.2.2. “Authenticate Actors” Tactic
Chromium and Thunderbird suffered from Improper Authentication (CWE-287) issues, affecting their “Authenticate Actors”

tactic.

• CWE-287 Improper Authentication: Systems interact with a multitude of actors during their operations. To ensure the
security of a system, a commonly implemented mechanism is properly authenticating all actors interacting with a system.525

This is done to ensure that the system and other users know if an actor is whom they claim to be. These types of tactical
vulnerabilities were caused by the following problems:

– Incorrect Information About Entity Requesting Credentials in HTTP Authentication: The application does not display
enough information about the entity requesting the credentials in an HTTP authentication.
Example: When implementing HTTP Basic Authentication, Chromium displayed to the user the message provided by530
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Figure 7: Root Cause Analysis of Tactical Vulnerabilities related to Authenticate Actors Tactic

the server in the “WWW-Authenticate” HTTP header. The problem is that this message may be ambiguously written
to lead the user to believe that the server is trustworthy (e.g. “The site “www.trusted-website.com” is requesting your
e-mail password for security purposes”).
Impact: One important aspect of the Authenticate Actor tactic’s implementation is that the system makes users aware
of which entity they are providing their credentials to. When users are unaware of which entity is requesting their535

credentials, it allows user-assisted attacks. Users may be tricked into trusting a fake entity with their credentials.
Recommendations: Developers should force the application’s UI implementation to display the entire entity’s origin
(domain and scheme) along with the entity’s provided message in an unambiguous fashion. As discussed by developers
of the case studies, an approach to help solve ambiguity is to show the server’s origin and provided message separately
and with distinct labels to each of them.540

– Incorrectly Handling Exceptional Scenarios: A general authentication implementation workflow is: (1) system requests
actor’s credentials; (2) the actor provides its credentials; (3) system checks whether credentials are valid. However, the
actor might also cancel the authentication request during any of these steps. We found instances of vulnerabilities both
in Thunderbird and Chromium in which the cancel request was not properly processed by the tactic implementation.
Example: When a user canceled the sign-in request to synchronize data, Chromium would still start the synchronization545

(CVE-2013-6643).
Impact: An attacker can exploit this flawed tactic implementation to bypass the authentication mechanism and steal data
(e.g. passwords) without the victim’s awareness.
Recommendations: Developers should implement an error handling mechanism that captures such exceptional scenarios
involving failures or a cancel request.550

– Incorrectly Performing Authenticity Checks For Multiple Actors: Occurs when the tactic’s implementation concurrently
receives multiple requests from different actors, but it checks only the authenticity for one of the actors in the request.
Example: In Thunderbird’s CVE-2008-5022, an attacker could bypass the authenticity check through registering multiple
listeners to the same event.
Impact: Although the “Authenticate Actors” tactic has been adopted into the system, its incorrect implementation results555

in an authentication bypass.
Recommendations: Developers should ensure that all requests are queued and the authenticity check is performed for
each of these requests.

– Incorrectly Verifying the Identity of the Broker in a Brokered Authentication: In a brokered authentication [45], there is
an authentication broker in charge of assigning security tokens to actors. This problem occurs when the brokered au-560

thentication implementation incorrectly verifies whether the token obtained by the actor was issued by a trustworthy
authentication broker.
Example: The OAuth protocol allows redirecting to a Website after a successful authentication. In CVE-2013-6634,
Chromium used the wrong URL (in a chain of redirects) when checking the identity of the broker that issued the token
in the authentication. It allowed attackers to hijack user sessions.565

Impact: It results in a bypass of the tactic.
Recommendations: Mitigating such a problem requires that the tactic’s implementation verifies that tokens are signed by
the issuing authentication broker. This implementation needs to take into account redirect scenarios in which the correct
URL is the last one in a chain of redirects.

– Incorrectly Authenticating Certain Actor Types: Typically, a system has multiple types of actors interacting with it, such570

as end users (i.e. humans), machines, plug-ins, etc. We observed vulnerabilities in which the tactic’s implementation did
not authenticate a subset of these actors.
Example: In CVE-2013-0910, Chromium allowed plug-ins (an external actor) to be executed without checking their
trustworthiness.
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Impact: These actors would be granted access to the system, and be able to access unauthorized data.575

Recommendations: While some actors are obvious (such as users) others might be more subtle and implicit (such as
plug-ins or extensions). The fix requires ensuring that all actors (users or external programs) that interact with the
software are identified, and authenticated.

5.2.3. “Limit Access” Tactic
This tactic is concerned with limiting access to resources such as memory, files, and network connections. Both PHP and580

Chromium had weaknesses in their “Limit Access” tactic related to External control of File or Path (CWE-73) and Execution
with Unnecessary Privileges (CWE-250).
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Figure 8: Root Cause Analysis of Tactical Vulnerabilities related to Limit Access Tactic

• CWE-73 External Control of File or Path: Both PHP and Chromium handle requests in which a path to a file resource is
provided in order to access the file or perform a file-related operation (e.g., create a compressed archive of a directory). These
requests are intended to be contained in a “safe area”, meaning that files/directories outside this area should not be accessed.585

However, there were vulnerabilities in these systems that were resulting in an escape of this safe area due to the following
problems:

– Incorrect Parsing of the Provided File Path: The tactic’s implementation incorrectly handled file paths that contained “.”
or “..” characters or that were symbolic links.
Example: Chromium leveraged a user-provided filepath to open/create a database. By design, the callee is allowed to590

access any file inside a dedicated database directory (isolated). However, in Chromium’s CVE-2014-1715, the imple-
mentation of this design decision did not check that the filepath was not a symbolic link, resulting in an attacker accessing
files from the user.
Impact: These “dot-dot” (“.” or “..”) characters and symbolic links can be used by attackers to access resources outside
the safe area, thereby successfully bypassing the “Limit Access” tactic.595

Recommendations: To correctly enforce a safe area while implementing the “Limit Access” tactic, developers need to
ensure that any externally provided path does not mistakenly escape this safe area. This involves checking for the pres-
ence of “dot-dot” sequences on the filepath as well as verifying whether the filepath points to an actual file and not a
symbolic link.

– Incorrect Manipulation of NULL Characters: The tactic implementation incorrectly handles a provided path that con-600

tains NULL-related characters (e.g. “\x00” or “%00” or “\0”) while implementing the “Limit Access” tactic.
Example: PHP (in CVE-2015-4025) truncated a provided filepath that contained a “\0” character.
Impact: It allows attackers to bypass the tactic and access restricted files/directories.
Recommendations: This problem is prominent in programming languages that require NULL characters as a way to
terminate strings. From our observations, the problem can be mitigated by leveraging existing frameworks that handle605

invalid characters in a file path while implementing the tactic.

• CWE-250 Execution with Unnecessary Privileges: Chromium has a multi-process architecture, meaning that different com-
ponents run in different processes. These processes communicate with each other through an Inter-Process Communication
layer (IPC). Each of these processes may also have different privilege levels, based on their capabilities. Similarly, the PHP
interpreter executes PHP scripts with different privilege levels. We found cases in which processes were executed with more610

privileges than intended, caused by the following:

– Misconfiguration of Default Privileges: Occurred when the system’s privileges default configuration is too loose, pro-
viding unnecessary privileges to processes.
Example: The default permissions configuration of the PHP’s process manager allowed any user to run arbitrary code
with the same permission level of the process manager (CVE-2014-0185).615

Impact: An attacker can leverage this vulnerability to perform over-privileged operations.
Recommendations: The tactic’s implementation should protect the system by default following the least privilege se-
cure design principle [46]. When implementing software that will execute in a shared environment, an alternative is to
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specify the default permissions to only allow read/write access to the file owners and other users in the group (e.g. 660
permission in Unix-based systems).620

– Not Properly Isolating Processes with Different Privilege Levels: Processes in a sandboxed environment must only inter-
act with resources and/or processes from within the sandbox. Thus, they should not be communicating with higher-level
processes and/or processes with different privilege levels. However, we found cases in which the system failed to deny
the communication between processes with different privilege levels.
Example: In CVE-2012-2846, Chromium allowed sandboxed processes to use the Unix ptrace command to manipulate625

Chrome’s UI process in order to execute arbitrary code.
Impact: This improper process isolation implementation results in a lower privileged process leveraging a process out-
side the safe area to perform an operation at a higher privilege level.
Recommendations: We observed two alternatives to mitigate this problem: (1) starting the sandboxed process at low-
integrity level (for performing required initialization tasks), then dropping these privileges to the minimum after the630

initialization is complete; (2) adding a policy to the sandbox engine that the sandboxed process cannot invoke system
calls that are used to manipulate other processes (such as ptrace).

5.2.4. “Authorize Actors” Tactic
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Figure 9: Root Cause Analysis of Tactical Vulnerabilities related to Authorize Actors Tactic

The “Authorize Actors” tactic had instances of tactical vulnerability types Improper Access Control (CWE-284), Privi-
lege/Permission Management Issues (CWE-266, CWE-269, CWE-274, and CWE-280), Untrusted Search Path (CWE-426)635

and Missing Authorization (CWE-862).

• CWE-862 Missing Authorization: This tactical vulnerability type is a consequence of not adopting the “Authorize Actors”
tactic such that the system performs authorization checks before an operation takes place. We found instances of this weakness
in the three case studies caused by the following:

– Not Explicitly Asking the User for Permission to Execute an Action: The system’s design does not adopt an authoriza-640

tion mechanism that explicitly asks the user if the system is allowed to perform a certain task or grant access to a certain
resource.
Example: Chromium executed JRE applets without explicitly asking permissions from the user (CVE-2011-3898).
Impact: It allows attackers to perform malicious activities without user awareness.
Recommendations: The mitigation involves identifying the actions that require user mediation, in which case the system645

needs to adopt the Authorize Actors tactic in order to request user consent.

– Elevation of Privileges Without Revoke Mechanism: This occurs when the system is designed to load extensions/plug-
ins that are allowed to perform privileged actions without any configuration that could restrict or drop privileges.
Example: PHP allowed the libxslt extension to create and write to files. There was no configuration to allow end-users
to revoke this privilege (CVE-2012-0057).650

Impact: The system remains unprotected from data tampering.
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Recommendations: The mitigation procedure consists in adopting the “Authorize Actors” tactic such that it has configu-
ration parameters that enable/disable specific types of operations (reading files, accessing networks, creating directories,
etc).

– Runtime Configuration Without Authorization Check: The system allows the change of security-sensitive settings at run-655

time without any authorization check.
Example: A vulnerability in PHP (CVE-2007-5900) occurred because attackers were able to overwrite protected config-
urations using the function “ini set()” from the PHP language.
Impact: Attackers can leverage this vulnerability to overwrite configuration parameters.
Recommendations: It requires defining the subset of security properties that are read-only at runtime. This way, the660

application adopts the “Authorize Actors” tactic to check whether the entry is allowed to be modified at runtime before
modifying its value upon request.

• CWE-426 Untrusted Search Path: Both Chromium and Thunderbird load system libraries at runtime to perform certain
tasks. The main threat related to loading libraries is that they cross trust boundaries (i.e. they are not under the direct control
of the system), so an attacker could leverage this to inject a malicious copy of the desired library. In both systems, we found665

vulnerabilities that allowed attackers to execute an arbitrary library caused by:

– Attempt to Load an Inexistent Library: The system’s design does not take into account different operating system ver-
sions in which the system may run. This way, the application attempts to dynamically load a library that does not exist
on the underlying operating system.
Example: There was a vulnerability in Thunderbird caused by attempting to load the “dwmapi.dll” library on all Win-670

dows versions. However, this DLL is only available on versions after Windows XP, which means that intruders could
place a malicious “dwmapi.dll” in the working directory of a machine with a Windows XP and have their malicious code
successfully executed.
Impact: This allows attackers to create a malicious library placed in the expected location, resulting in the system exe-
cuting this fake library code.675

Recommendations: To mitigate the problem, during the system’s design, create a list of libraries per operating system
version. In this case, the application first verifies whether such library would exist in the underlying OS even before
attempting to load it to the memory.

– Loading Libraries from World-Accessible Directories: The application attempts to search for the desired library dynam-
ically, but the devised search algorithm includes unsafe directories (i.e., directories which are world-readable such as the680

current working directory).
Example: Thunderbird attempted to load the “wsock32.dll” through using the dynamic search algorithm provided by the
Windows API (CVE-2012-1943). This Windows API attempts to find the library from many locations, including the
directory from which the application was loaded and the working directory of the parent process, which are potentially
unsafe (as they are not read/write protected).685

Impact: Since these directories are not protected by default against modifications, an attacker could place a malicious
library in one of these unsafe locations and execute it.
Recommendations: Fixing the problem can be performed in two ways. The first approach is to design a library-loading
mechanism that uses absolute file paths to access the library. Another approach is to design the system to load libraries
only from the system directories, which are protected by default against public reading and writing.690

– Wrong Path to Library: The system is designed to hardcode paths to a library, which can lead to the execution of the
wrong library if the hardcode path is incorrect.
Example: During an install on Windows machines, Thunderbird would execute the code from an executable “pro-
gram.exe” located at “C:\” instead of the executable placed in its installation directory.
Impact: It allows local attackers to execute arbitrary code through a Trojan horse executable file placed in the system’s695

root directory.
Recommendations: It requires designing the system such that the hardcoded paths are according to the underlying oper-
ating system and version.

• CWE-266, CWE-269, CWE-274, and CWE-280 Privileges/Permissions Management Issues:

– Incorrect Transfer of Privilege Information: To perform authorization, a basic premise is that the permissions and priv-700

ileges are available at all times when the authorization check is to be performed. This means that the permissions and
privileges information needs to be propagated (if needed) to child process/objects/etc before the authorization takes
place.
Example: In Chromium, users are allowed to select certain Websites that are authorized to load plug-ins into the browser.
In CVE-2010-2108 the list of blocked Websites is not transmitted to the component that performs the authorization check,705
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resulting in untrusted websites to execute arbitrary plug-ins without user consent.
Impact: It results in a bypass of the “Authorize Actors” tactic.
Recommendations: The tactic’s implementation should transmit any privilege information to the component that per-
forms the authorization check.

– Application-Level Enforcement of OS-level Permissions: Files within a computer typically have a list of permissions710

that indicate the subjects allowed to access them. This type of enforcement is performed by the underlying operating
system. However, we found vulnerabilities in PHP which were caused by attempting to perform this OS-level permis-
sions enforcement at the application level.
Example: PHP had the safe mode configuration parameter in prior version 5.4.0 to enforce access control to files and
directories on the Web server running the PHP interpreter. The goal of this parameter is to avoid scripts from different715

applications running on the same server accessing files/directories from each other. However, attempting to enforce
resources permissions at the application level is inappropriate. Moreover, such enforcement mechanisms needed to be
implemented throughout the modules of PHP that performed any file-related operations. However, there were several
cases that developers did not check whether the safe mode was enabled and, then invoking the function that does the
access control verification, thereby bypassing the designed access control mechanism. Hence, applications that were720

relying on this safe mode mechanism would be exposed to security breaches.
Impact: Attackers can bypass this application-level enforcement.
Recommendations: In shared execution environments, applications should not attempt to protect their files from access.
Instead, they should configure the access control lists of the underlying operating system.

– Not Enforcing Resource Limits for a Sandboxed Process: The implementation of the sandboxing mechanism that en-725

forces that processes run isolated from each other, incorrectly enforces a threshold that dictates the maximum amount of
resources that a process can use (such as memory).
Example: In CVE-2015-3335, Chrome’s Native Client implementation did not enforce limits for data usage, allowing
“row-hammer” attacks.
Impact: It affects the system’s performance. Such excessive resources usage can enable an attacker to implement sand-730

box escaping attacks through memory manipulation or to attempt to access data files which are not necessary for the
performance of the sandboxed process.
Recommendations: Developers should ensure that the tactic’s implementation enforces that sandboxed processes have
a threshold value that limits access to system resources, ranging from logical resources (such as user data) to hardware
ones (e.g. CPU).735

– Escaping Authorization Check Through Hardlinks/Symbolic Links/Junctions: This problem occurs when the implemented
sandboxing mechanism follows links that go outside the safe area, bypassing the protection mechanism.
Example: In CVE-2013-1672, Thunderbird’s update service does not take into account the existence of junctions, which
allow a local attacker to trigger the execution of a malicious executable during an automatic update.
Impact: Such a mistake in the implementation of the “Authorize Actors” tactic enables attackers to bypass the sandbox-740

ing solution.
Recommendations: The fix involves not following the links provided inside in a sandbox that are pointing to locations
outside the defined safe area.

– Not Locking a Shared Resource: Developers do not lock read/write access to a sensitive file while using it.
Example: Thunderbird did not lock write access to an archive file, allowing local attackers to perform trojan attacks.745

Impact: Attackers could leverage race conditions to modify the file and get the process to use that corrupted file, rather
than the original file.
Recommendations: Fixing the problem involves (i) locking the shared resource; (ii) checking its integrity/trustworthiness
(verify whether it has not been modified) and then using it (releasing the lock after the task is completed).

– Sandboxed Object Inherits Privileges from Superclass: This occurs when developers create an object which is meant750

to run in a sandboxed area. However, this object’s class inherits methods from a superclass which is not sandboxed,
meaning that there are some methods that run without privileges (bypassing the sandbox protection area).
Example: Thunderbird allowed attackers to create objects outside the sandbox and then leverage calls to the valueOf()
method to escape the sandbox (CVE-2006-2787).
Impact: It leads to privilege escalation and remote code execution.755

Recommendations: To prevent this problem, the implementation of the “Authorize Actors” tactic needs to check that the
pointer of the object being manipulated (“this”) is within the right privilege level.

– Sandboxed Component is Assigned Wrong Privilege Level: Occurs when the tactic’s implementation allows a lower
privileged component to be granted more permissions than intended by the design.
Example: In CVE-2010-4041, Chromium executed worker processes outside the sandboxed environment.760

Impact: A sandboxed component should have a defined level of privilege. Different components in a sandbox may have
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different privilege levels, according to the tasks they perform. This problem occurs when developers fail to check the
context and functionality of the component and therefore, grant incorrect privilege levels. Such an error in the implemen-
tation of the tactic can result in Cross-Site Request Forgery (CSRF), an attack that forces the user to execute unwanted
actions on a web application in which they’re currently authenticated.765

Recommendations: The mitigation involves passing the code to the sandbox environment before execution.

• CWE-284 Improper Access Control:

– Incorrect Authorization of External APIs/Plug-ins/Extensions: the application has a flawed authorization implementa-
tion for external programs (i.e., APIs, plug-ins, extensions, and libraries).
Example: In CVE-2013-1717, Thunderbird did not perform an authorization check before granting access to local files770

to Java applets (a plug-in).
Impact: Unauthorized APIs/Plug-ins/Extensions gain access to the data or control of other extensions/plug-ins. It can
also tamper with the internal integrity of the system.
Recommendations: The fix involve adding an intermediary protection layer between the application core’s functionalities
and plug-ins/external libraries. This intermediary layer is in charge of performing authorization checks.775

– No Warnings About Permissions Changes: When the system allows extensions or plug-ins to change their permissions
at runtime, the implementation of the “Authorize Actors” tactic does not warn the end user.
Example: Chromium did not display a warning indicating that a malicious plug-in has access to the camera (CVE-2015-
3334).
Impact: Attackers can use plug-ins or extensions to collect users’ data without their awareness (e.g. camera or micro-780

phone).
Recommendations: Any permission elevation requested by plug-ins/extensions have to be mediated by the user through
confirmation dialogs.

– Incorrect Hostname Normalization: The system’s tactic implementation leverages the hostname to check whether an
actor is allowed to perform certain tasks, but it incorrectly normalizes the hostname during the authorization check.785

Example: An extra dot (“.”) at the end of the hostname in the Chromium project has misled the authorization mechanism,
leading to a bypass vulnerability (CVE-2015-1269).
Impact: A mistake in the implementation of the hostname identification and matching can result in a bypass of the
authorization tactic.
Recommendations: Mitigation procedures include normalization of hostnames and rejecting hostnames with invalid790

characters.

– Not Revoking Access: The system’s tactic implementation does not revoke access to the resource when it is not being
used anymore.
Example: Chromium allowed remote attackers to obtain video camera data through a session that remains active even
though the user had navigated away from the webpage (CVE-2014-1586).795

Impact: It corresponds to a violation of the least privilege design principle [46]. It allows attackers to steal sensitive data
without user awareness.
Recommendations: Drop access to privileges as soon as the resource is not being used anymore.

5.2.5. “Validate Inputs” Tactic
The following results were obtained for the Validate Inputs tactic:800
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Figure 10: Root Cause Analysis of Tactical Vulnerabilities related to Validate Input Tactic
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• CWE-59 Link Following:

– Not Checking Whether Filepath is Symbolic Link: This occurs when the tactic’s implementation receives a file path as
input but it does not check whether the symlink resolves to an unprotected file.
Example: PHP’s configuration script uses a predictable filename in /tmp/ to store temporary installation files. A local
attacker could replace that file by a symlink and be able to overwrite/delete user files (CVE-2014-3981).805

Impact: It allows local attackers to read/overwrite/delete user files.
Recommendations: The fix involves verifying the type of the file before performing any file operations. In the case of
symlinks, the implementation then checks what is the file/directory that the link resolves.

• CWE-89 SQL Injection:

– Incorrect Escaping of Data: Special characters (quotes, backslashes, etc) are not escaped or removed in a SQL query810

enabling an attacker to implement a SQL injection attack.
Example: PHP used to not escape characters of externally provided SQL query string as input to the function mysqli fetch assoc
(CVE-2010-4700).
Impact: It tampers with the integrity of data stored in relational databases.
Recommendations: Fixing involving escaping some characters that are part of the SQL syntax, such as back/forward815

slashes, quotes (double and single), percentages (%) etc.

• CWE-94 Code Injection: This is a tactical vulnerability type that occurs when malicious code segments are created based on
external inputs. In this case, attackers can provide inputs in the form of code syntax, thereby injecting malicious behavior to the
software. Without implementing checks on the type of input, attackers can inject their malicious codes into the application’s
runtime behavior to collect data or disrupt the application. In our analysis we have found that some of the underlying causes820

of this type of vulnerability are the following:

– Not Neutralizing Code Before Invoking a Dynamic Execution Function: Occurs when the application’s input validation
implementation execute code provided as a string input without neutralizing any code injected in the input.
Example: Thunderbird’s built-in XML Binding Language (XBL) allowed intruders to execute arbitrary code due to
incorrect input validation in the following XBL binding methods: valueOf.call and valueOf.apply (CVE-2006-1733).825

Impact: It allows attackers to execute arbitrary code.
Recommendations: In interpreted languages such as Java, we commonly have a function/method that can execute code
provided as a String input (e.g., eval() in JavaScript). In this case, to ensure that only safe commands are passed to
the function, the software needs to parse the provided input in order to detect and remove unsafe commands from the
input, before passing it to the execution engine.830

– Flawed Neutralization Routine: Occurs when developers implemented a function/method to neutralize unsafe externally
provided commands, but the routine does not correctly cover all the possible types of unsafe commands.
Example: Thunderbird’s CVE-2012-3980 allowed attackers to inject arbitrary JavaScript code with higher privileges
through forwarding this code to an eval operation. The eval operation did not neutralize the unsafe commands provided
by the attacker.835

Impact: The attackers can provide unsafe commands as input and cause corrupted memories and other issues.
Recommendations: The observed examples required adding verifications about the context of the call (i.e., from a lower
/ higher privileged actor) and performing the neutralization accordingly.

– Performing Reflection Actions from Inputs: Some interpreted languages like Java support reflection. In this case, sim-
ilar to “Not Neutralizing Code Before Invoking a Dynamic Execution Function”, developers were not implementing a840

command neutralization routine before performing reflection operations based on user-provided inputs.
Example: In Firefox’s CVE-2006-1735, the JavaScript engine allowed attackers to retrieve a constructor from XBL
compilation scope through leveraging a reflection call.
Impact: It can be used to execute arbitrary code, tamper with the application expected behavior or elevate privileges.
Recommendations: The mitigation procedures for this problem are (i) implement code neutralization procedures for the845

user provided data before adopting it in a reflection context; or (ii) hide reflection calls from external actors.

• CWE-20 Improper Input Validation: Different segments of the software expects user input, which needs to be validated
against different requirements related to its type, size, boundary values, etc. If these requirements are not satisfied and
the system receives unintended input, an altered control flow, arbitrary code execution or control of a resource can occur.
According to our analysis, this type of tactical vulnerability occurred due to the following causes:850

– Validation Using Blacklisting rather than Whitelisting: Occurs when the system uses blacklists rather than a whitelist-
based approach for input validation.
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Example: Chrome’s CVE-2009-3931 used a blacklist of files to block the download of certain dangerous file extensions,
but the blacklist was incomplete: it did not cover potentially dangerous extensions such as “(1) .mht and (2) .mhtml files,
which are automatically executed by Internet Explorer 6; (3) .svg files, which are automatically executed by Safari; (4)855

.xml files; (5) .htt files; (6) .xsl files; (7) .xslt files; and (8) image files that are forbidden by the victim’s site policy”12.
Impact: Implementing the “Validate Input” tactic based on blacklists is prone to implementation mistakes: the validation
mechanism may not cover all possible malicious input types. It allows attackers to craft special inputs that are not
covered by the blacklist.
Recommendations: In our data, we observed that the problem can be fixed through (i) adding the missing malicious data860

into the blacklist or converting the validation routine to a whitelist-based approach. Blacklists enumerate the prohibited
input types in the code, whereas whitelists enumerate the accepted input types in the code. Generally, using whitelists is
the safest approach. Blacklists are prone to mistakes, as the likelihood of it containing all the potential ways the input
can go wrong is low. This, in turn, increases the chances that attackers can figure out a way in which the input does not
violate the blacklist, but is still harmful to the software.865

– Not Handling an Unexpected Data Type: This problem occurs when systems do not handle unexpected input data types
properly. It can also be referred to as a “Type Confusion”.
Example: PHP’s input validation implementation assumed that a provided input was of an array type without actually
checking this assumption (CVE-2015-4148).
Impact: This rudimentary implementation of the tactic results in crashes.870

Recommendations: Usually, input received from the user needs to be of a certain type. Developers should implement
checks to ensure that the input’s data type is the correct one. Moreover, they need to also develop routines that handle
situations where unexpected data types are provided as input. The system needs to be able to recognize that the incorrect
input type has been provided and proceed with the rest of the functionalities in the aforementioned scenario.

– Broken Parser: The system requires a data structure provided as input and needs to parse it. However, the accuracy and875

the level of inclusiveness of the parsing method used may be faulty and fail its initial purpose. If this parsing method
fails to parse the structure in such a way that it can extract its values, a broken parser problem occurs.
Example: In CVE-2014-7899, Chromium did not correctly parse a URL starting with “blob: ” followed by a URL and a
long username. It allowed attackers to spoof the URL bar.
Impact: This rudimentary implementation of the tactic results in an application crash or usage of wrong values, affecting880

the system’s logical behavior.
Recommendations: When implementing the input validation tactic, developers should check the data structure received
as input against a data schema.

– Incorrect Escaping of Data: The system does not correctly neutralize “control” characters in an input.
Example: Chromium incorrectly escaped input, allowing that the content in an href attribute to be rendered as regular885

HTML entities. It allowed attackers to steal data or CSRF tokens (CVE-2015-6790).
Impact: The rudimentary implementation of a validation input tactic may result in arbitrary code execution and memory
corruption
Recommendations: Fixing this tactic implementation requires two things (i) identifying the underlying context in which
the data will be used and (ii) adopting escaping procedures according to this context. For instance, in HTML rendering890

context, a user input should be escaped to HTML entities (e.g. “<html>” is escaped as “&lt;html&gt;”) before rendering
it to a Web page.

6. Threats to Validity

This section discusses validity threats based on the validation scheme presented by Runeson and Hoest [31] (construct, internal
and external validity).895

Construct validity is about how accurately the applied operational measures truly represent the concepts that researchers are
trying to study. In our study, these included the measures used to identify tactical and non-tactical vulnerabilities, see (Section 4). To
identify the types of vulnerabilities, we leveraged vulnerabilities tracked by the NVD along with data from bug and issue tracking
systems of Chromium, PHP, and Thunderbird. Therefore, our analysis relies on the accuracy of the data reported in these systems.
Consequently, we may have missed vulnerabilities that were not tracked by the NVD. Also, we had to discard vulnerabilities because900

we could not find the corresponding entry in the issue tracking system or the issue was still private at the time of our study.
Internal validity reflects the extent to which a study minimizes systematic error or bias so that a causal conclusion can be drawn.

The primary threat in our study is related to the manual analysis of CVE instances in order to observe the nature of security design

12https://nvd.nist.gov/vuln/detail/CVE-2009-3931
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issues and to identify tactical and non-tactical vulnerabilities. To mitigate this threat, we performed both top-down and bottom-
up classification of the vulnerabilities (see Section 4). Moreover, we conducted a peer review process in which two individuals905

analyzed vulnerabilities and shared their rationale with each other to resolve disagreements. Parts of this peer review also included
practitioners. We consider that the peer evaluation minimized the impacts of biases and mistakes by the manual inspection of CVEs.

External validity evaluates the generalizability of our findings. There are two threats in this respect:

• We analyzed the historical vulnerability reports from three systems (PHP, Chromium, and Thunderbird), which are Internet ap-
plications and mostly implemented in C/C++. Here, we do not aim for statistical generalization, but analytical generalization:910

we carefully selected the three systems from different software domains and with a high number of reported vulnerabilities.
Therefore, we expect the systems to be representative of a typical large-scale software engineering environment. Also, when
discussing our results, we highlighted which findings are specific to a system and which findings apply to all systems.

• We identified the root causes of vulnerabilities based on a subset of types of vulnerabilities from the CWE catalog (Sec-
tion 4.2.3). We acknowledge that it may not be complete, i.e., that it does not include all possible ways that developers can915

implement tactics incorrectly. However, this subset comes from a community-established list of possible types of security
issues that have been observed and documented in the real world.

7. Conclusions and Future Work

This paper presented the concept of CAWE (Common Architectural Weakness Enumeration), a catalog of common types of
architectural weaknesses. This catalog constitutes an effort towards stimulating critical reflections about security-related issues in920

developers to avoid fundamental design problems at both architectural design and implementation time. Furthermore, the catalog
helps researchers to develop novel techniques to identify and mitigate such flaws. Currently, the catalog enumerates 223 architectural
weaknesses, documenting how these weaknesses may affect security tactics. As future work, we plan to evaluate our catalog with
security experts, in order to expand it.

Furthermore, this paper has presented a first-of-its-kind empirical study towards understanding software vulnerabilities related925

to security tactics. We identified tactical and non-tactical vulnerabilities in three software systems. While most vulnerabilities are
non-tactical, on all three systems more than 30% were tactical. We discovered that the improper implementation of the “Authorize
Actors”, “Validate Inputs” and “Encrypt Data” security tactics may cause the highest number of potential problems. In the three
systems, the tactics most impacted by vulnerabilities are “Validate Inputs”, “Authorize Actors”, and “Limit Exposure”. Further, our
analysis suggests that “Improper Input Validation” is the most common type of vulnerability across all three systems.930

Lastly, looking more in-depth the most common types of tactical vulnerabilities, we analyzed and categorized their root causes.
This helps architects and researches aware of the most common mistakes they can make that can introduce vulnerabilities in a
system.
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