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ABSTRACT
Issue tracking is one of the integral parts of software develop-
ment, especially for open source projects. GitHub, a commonly
used software management tool, provides its own issue tracking
system. Each issue can have various tags, which are manually as-
signed by the project’s developers. However, manually labeling
software reports is a time-consuming and error-prone task. In this
paper, we describe a BERT-based classification technique to au-
tomatically label issues as questions, bugs, or enhancements. We
evaluate our approach using a dataset containing over 800,000 la-
beled issues from real open source projects available on GitHub.
Our approach classified reported issues with an average F1-score
of 0.8571. Our technique outperforms a previous machine learning
technique based on FastText.

CCS CONCEPTS
• Software and its engineering→ Software creation and manage-
ment; • Computing methodologies → Natural language process-
ing.
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1 INTRODUCTION
Software maintenance is a crucial part of the software development
life cycle to mitigate vulnerabilities, fix bugs, and evolve the soft-
ware according to the users’ needs [5, 16]. Issue Tracking Systems
(ISTs) are frequently used to aid software maintenance and evo-
lution during software development. These systems allow users
to create new entries reporting a bug, request a new feature, or
ask questions regarding the project. Software engineers use the
information provided in these entries to understand the nature of
the report and, in case of actual bugs, narrow down the list of files
that are needed to be changed to fix the issue [19]. Developers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NLBSE’22, May 21, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9343-0/22/05. . . $15.00
https://doi.org/10.1145/3528588.3528660

also use ISTs to track open issues, obtain additional information
from reporters, and discuss potential bug-fixing solutions (including
prioritizing issues/features to be developed).

GitHub, a widely used project management software, provides
a built-in issue tracking system where users can ask questions,
suggest new features, and point out possible bugs. Since these ISTs
can be open to the public, developers need to triage new entries to
understand the nature of the report (whether it is an actual valid
bug, a feature, or simply a question) to assign a custom label [3].
However, developers can find it difficult, especially for a popular
project, to manually label the issues. This manual process can be
error-prone, labor-intensive, and time-consuming [6].

In this paper, we describe a BERT-based1 model to predict an
issue’s type. We used a train set encompassing more than 700,000
labeled issue reports extracted from real open source projects and
a test set with 80,518 issues to evaluate our solutions. This dataset
was provided by the organizers of the NLBSE’22 tool competi-
tion [7]. Our approach’s highest F1-score achieved was 0.8586,
which exceeds the baseline model F1-score (0.8162). Our imple-
mentation is available on GitHub: https://github.com/s2e-lab/BERT-
Based-GitHub-Issue-Classification.

This paper is organized as follows: Section 2 describes the ap-
proach to classify GitHub issue reports. Section 3 presents the
results. Section 4 describes the current state-of-the-art in predicting
GitHub issue reports. Finally, Section 5 concludes the paper with
future directions.

2 BERT-BASED ISSUE TYPE CLASSIFICATION
We trained and tuned a multi-class classifier to label GitHub issues
automatically. Figure 1 presents an overview of our approach. The
following subsections discuss the dataset, the preprocessing and
tuning steps, and the training and evaluation procedures.

Figure 1: Overview of the Approach

2.1 Dataset
The dataset contains 803,417 labeled issue reports collected from
real GitHub projects. Each entry contains the following metadata:
1BERT: Bidirectional Encoder Representations from Transformers.
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• Label: It indicates the nature of the report, which can be one of
the following: bug, enhancement, and question.

• Issue title: A short descriptive sentence that indicates at a glance
what the issue is about.

• Issue body: Each report must contain an issue body that includes
a description explaining the purpose of the issue. This can consist
of any details that might help resolve the problem.

• Issue URL: the URL to access the report on GitHub.
• Repository URL: Every issue is associated with a GitHub repos-
itory. This metadata stores the link of the remote GitHub reposi-
tory.

• Creation timestamp: the timestamp of when the report was
created.

• Author association: It describes how the issue creator is related
to the repository. There are five types of author associations:
Owner, Collaborator, Contributor, Member, None.
The dataset is split into a training set and a test set by the or-

ganizers of the NLBSE’22 tool competition [7]. The training set
contains 722,899 (90%) and the test set contains 80,518 (10%) of
the total labeled issue reports. We split the training set into a new
train and validation set. The new train set contains 85% of the
previous train set, and 15% of the data is in the validation set. We
used train_test_split function from scikit-learn [14] where we
re-shuffled the data and split in a stratified fashion, using the class
labels because our dataset is imbalanced. The dataset distribution
is given in Table 1.

Set Bug Enhancement Question Total
Training set 306,937 (50.0%) 254,468 (41.4%) 53,059 (8.6%) 614,464
Validation set 54,166 (50.0%) 44,906 (41.4%) 9,363 (8.6%) 108,435
Testing set 40,152 (49.9%) 33,290 (41.3%) 7,076 (8.8%) 80,518

Table 1: Dataset distribution.

2.2 Preprocessing
Before training the model, we preprocessed the data and fixed the
model’s hyperparameters. This section discusses data preprocessing
steps and details of the hyper-parameters (i.e., Pre-trained Model,
Optimizer, and Scheduler).

2.2.1 Text Cleaning & Feature Extraction. A GitHub issue contains
a title and a detailed description. An issue’s description may contain
code segments or screenshots of the output. For example, Figure 2
shows a GitHub issue from Facebook’s Flow repository containing
code segments. Hence, we need to clean the data before encoding
it.

As previously explained in Section 2.1, each issue has seven
metadata in which one of them is the label. We consider the issue
title and the issue body as the main features out of six features.

First, we concatenate these two features (title and body) into a
new metadata, which we refer to as issue data. Then, we used the
Gensim2 library to remove repeating whitespace characters (i.e.,
spaces, tabs, and line breaks) from the issue data. Moreover, we
replaced tabs and line breaks with spaces. This processed issue data
is used as the feature of our model.
2https://radimrehurek.com/gensim/

Figure 2: GitHub’s issue with bug tag from facebook/flow
1. Repository Name, 2. Issue title, 3. Author handle and avatar,
4. Issue body, 5. Manually assigned labels

2.2.2 Encoding. To use a pre-trained BERT model, the feature data
must be divided into tokens, then mapped to their respective in-
dexes in the tokenizer vocabulary. We used BertTokenizer3 imple-
mentation, which is available in Hugging Face’s transformers [18]
package. We used the ‘bert-base-uncased‘ pre-trained model [4] to
tokenize our issue data. The ’bert-base-uncased’ model is trained in
English using a masked language modeling (MLM) objective. This
model is uncased (i.e., it is case-insensitive). For instance, it does
not differentiate between “issue” and “Issue”.

BERT is a pre-trained model that requires input data in a specific
format. Thus, we need the following items [11]:
• [SEP]: This token marks the end of a sentence or the separation
between two sentences

• [CLS]: This token is used at the beginning of our text and is used
for classification tasks, but BERT expects it no matter what your
application is.

• Token: It complies with the fixed vocabulary used in BERT.
• Token ID: It is for the token generated from BERT’s tokenizer.
• Mask ID: It indicates which elements in the sequence are tokens
and which are padding elements.

• Segment IDs: It distinguishes different sentences.
• Positional Embedding: It shows token position within the
sequence.
We used the batch_encode_plus method from BertTokenizer

to handle the specific format described before. We used this method
to extract the attention mask with the following parameters:
• add_special_token is set to true to encode special token;
• return_attention_mask is set to true to get the attention mask;
• padding is set to ‘longest’ to pad to the longest sequence in the
batch;

• truncation is set to true to truncate to the maximum acceptable
input length for the model;

• return_tensors is set to ‘pt’ to get PyTorch tensors as a return
value.
We used token ids (input_ids) and attention mask to create a

TensorDataset which is later fed into DataLoader to train and
3https://huggingface.co/docs/transformers/model_doc/bert#transformers.
BertTokenizer
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evaluate the model. The data loader is configured with random
sampling, and batch size equals four. Although the authors of the
BERT paper recommended using a batch size equal to 16 or 32 [4],
our GPU has a memory limitation, causing out-of-memory errors
when using the recommended sizes. Therefore, we used a shorter
batch size to solve this memory constraint at the cost of increasing
the training time.

2.2.3 Pretrained Model. We used the BERT pre-trained model from
Google AI [4]. The use of the bidirectional training of Transformer
[17] for language modeling is BERT’s fundamental technological
breakthrough. This contrasts with previous efforts, which looked
at a text sequence from left to right or combined left-to-right and
right-to-left training. [12]. The research findings suggest that bidi-
rectionally trained languagemodels can better understand language
context and flow than single-direction language models.

We first alter the pre-trained BERT model to provide classifica-
tion outputs in our work. Then, we keep training the model on
our dataset until the complete model, end-to-end, is well-suited to
our objective. We used BertForSequenceClassification4 from
Hugging Face. This is the standard BERT model with a single clas-
sification layer placed on top, which we employed as a document
classifier. The pre-trained BERT model and the additional untrained
classification layer get trained on our dataset. We utilized the pre-
trained model "bert-base-uncased," which refers to the version with
just lowercase characters ("uncased"). Since we did not want the
model to return the attention weights and all hidden states, we
disabled the flags while initializing the pre-trained model. After ini-
tializing the model, we fix our optimizer and scheduler, as described
in the next subsections.

2.2.4 Optimizer. We used AdamW [10] optimizer for the training.
We used the implementation of the Adam algorithm with weight
decay fix from HuggingFace. We used 1𝑒−5 as the learning rate (lr)
and 1𝑒−8 as the eps parameter, which is a very small number to
prevent any division by zero in the implementation.

2.2.5 Learning Rate Schedule. The learning rate schedule is a hy-
perparameter that changes the learning rate between epochs or
iterations to minimize the model’s loss. We used a linear schedule
with warmup implementation from HuggingFace. It created a sched-
ule with a learning rate that decreases linearly from the initial lr
set in the optimizer to 0, after a warmup period during which it
increases linearly from 0 to the initial lr fixed in the optimizer. The
implement takes input for the number of warmup steps which is
0 and the number of training steps, which is the size of the data
loader of the train set multiplying with the iteration number.

2.3 Training
We used a previously created data loader to unpack the batch in
our training phase, and each tensor was copied to the GPU. Af-
ter clearing any previously calculated gradients, we performed a
forward pass. In this step, the model provided the loss and logits
as the output before the activation. Then, we perform a backward
pass for calculating the gradients. We also clipped the norm of the
gradients to 1.0. This is to help prevent the "exploding gradients"
4https://huggingface.co/docs/transformers/model_doc/bert#transformers.
BertForSequenceClassification

problem [15]. Then, we perform the optimizer’s step to dictate how
the parameters are modified based on their gradients, the learning
rate, etc. Finally, we performed the scheduler’s step to update the
learning rate.

After each iteration, we calculated the average training loss and
model performance on the validation set by calculating validation
loss. We saved the model states for evaluating the model on training
sets. Since the authors of BERT recommended having 2-4 iterations,
we had four iterations for training.

2.4 Evaluation
We evaluate our model with the following metrics:
• Precision (P): It is calculated by dividing the number of records
with correctly predicted labels by the total number of predicted
observations in that class: 𝑃 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 . Here, TP (true positives)
is the number of records for which the label is predicted correctly.
In contrast, FP (false positives) denotes the number of records
for which the label is incorrectly predicted.

• Recall (R): It is computed for each group A by dividing the
number of successfully predicted observations in A by the total
number of observations in the corresponding class: 𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 .
Here, FN (false negatives) is the number of observations in class
A which are falsely predicted as other labels.

• F1-Score (F1): The F1-score combines the precision and recall of
a classifier into a single metric by taking their harmonic mean:
𝐹1 = 2×(𝑃×𝑅)

𝑃+𝑅 .
We calculated the Precision, Recall, and F1-Score for each class.

We used micro-averaging as the cross-class aggregation method
to calculate global scores due to the class imbalance present in the
data.

2.5 Implementation Details
We run our training job on a computing node that consists of Dual
Twelve-core 2.2GHz Intel Xeon processors - 24 total cores, 128
GB RAM, and 4 NVIDIA GeForce GTX 1080 Ti GPU accelerators.
We used a single core and one GPU to train our model. It takes
approximately 18 hours to train for a single iteration. We used
PyTorch [13] as a Deep learning framework, as well as the tokenizer,
pre-trained model, optimizer, and scheduler from HuggingFace5.
We used the evaluation matrices implementation from Scikit-learn
[14].

3 RESULTS
We used BERT pre-trained model to tune our dataset for classifying
GitHub issue report into three classes. We compare our result with
a baseline approach that used FastText [2]. Table 2 summarizes our
results. We used micro-averaging as the cross-class aggregation
method to calculate global scores. For that reason, the Precision
(P), Recall (R), and F1-Score (F1) have the same value, where the
highest value is 0.8586, and the average is 0.8571.

Our model consistently outperformed the baseline model using
FastText. It also achieved a better result in every class regarding
the F1 score. It especially outperformed the baseline approach with
respect to classifying issues that are labeled as questions.

5https://huggingface.co/
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Model Metrics Bug Enhancement Question Global

FastText
Precision 0.8314 0.8155 0.6521

0.8162Recall 0.8725 0.8464 0.3502
F1-Score 0.8515 0.8307 0.4557

Epoch 1
Precision 0.8755 0.8486 0.7269

0.8554Recall 0.8913 0.8934 0.4708
F1-Score 0.8833 0.8704 0.5714

Epoch 2
Precision 0.8831 0.8591 0.6789

0.8586Recall 0.8886 0.8880 0.5469
F1-Score 0.8859 0.8733 0.6058

Epoch 3
Precision 0.8722 0.8573 0.7392

0.8584Recall 0.90146 0.8875 0.4740
F1-Score 0.8866 0.8721 0.5776

Epoch 4
Precision 0.8763 0.8631 0.6706

0.8561Recall 0.8927 0.8772 0.5466
F1-Score 0.8844 0.8701 0.6023

Table 2: Result Comparison Between FastText and our BERT-
based Model.

4 RELATEDWORK
Kallis et al. [9] used FastText [2] to predict the types of GitHub issues
by using issue titles and description as features. They built Ticket
Tagger, a GitHub app to help developers in assigning issue types [8].
They achieved 0.75, 0.74, and 0.48 F1-score for bug, enhancement,
and question, respectively, by training on a balanced set and testing
an unbalanced set.

Artmann et al. [1] investigated the use of linear regression (LR),
convolutional neural network (CNN), recurrent neural network
(RNN), random forest (RF), and k-nearest-neighbor (KNN) algo-
rithms for a multi-label text classification of GitHub issue reports.
They used a 38,000 training rows dataset, and a test set contain-
ing around 12,000 rows. They split their dataset into three smaller
datasets with different labels. The CNN algorithm achieved the
highest F1-score for every data set.

Fan et al. [6] studied text-based classification approaches on a
large-scale dataset of GitHub issue reports. Four different machine
learning classifiers (i.e., Support Vector Machine - SVM, Naive
Bayes, Logistic Regression, and Random Forest) were evaluated
using 80 popular projects in GitHub consisting of about 252,000
issues. They labeled the issues into two classes: bugs and non-bugs.
They introduced a newmatrix based on F1-score, average F-measure
as 𝑓𝑎𝑣𝑔 , F-measure of bug (nonbug) as 𝑓𝑏𝑢𝑔 (𝑓𝑛𝑜𝑛𝑏𝑢𝑔), and number
of bug (nonbug) as 𝑛𝑏𝑢𝑔(𝑛𝑛𝑜𝑛𝑏𝑢𝑔).

𝑓𝑎𝑣𝑔 =
𝑛𝑏𝑢𝑔 ∗ 𝑓𝑏𝑢𝑔 + 𝑛𝑛𝑜𝑛𝑏𝑢𝑔 ∗ 𝑓𝑛𝑜𝑛𝑏𝑢𝑔

𝑛𝑏𝑢𝑔 + 𝑛𝑛𝑜𝑛𝑏𝑢𝑔
(1)

They observed that text-based classification approaches can achieve
69.7% to 98.9% of average F-measure (calculated as Equation 1) on
their dataset. They also found that the SVM classifier was the most
effective approach compared to other typical classifiers.

5 CONCLUSION
Automated issue type classification can be very helpful during soft-
ware maintenance, specially in open source projects where many
users can open issues. This paper discussed a BERT-Based approach
to automatically label issues as a question, bug, or enhancement.

Our model achieved an F1-Score of 0.8586 (on average), indicating
that it can be used to predict issue report class to reduce man-
ual work. In the future, we aim to improve our approach with a
larger dataset, especially for issue reports with question tags. This
approach can be integrated as a GitHub extension.
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