
1

Seneca: Taint-Based Call Graph Construction for Java

Object Deserialization

JOANNA C. S. SANTOS, University of Notre Dame, USA
MEHDI MIRAKHORLI, University of Hawaii at Manoa, USA
ALI SHOKRI, Virginia Tech, USA

Object serialization and deserialization is widely used for storing and preserving objects in files, memory,
or database as well as for transporting them across machines, enabling remote interaction among processes
and many more. This mechanism relies on reflection, a dynamic language that introduces serious challenges
for static analyses. Current state-of-the-art call graph construction algorithms does not fully support object
serialization/deserialization, i.e., they are unable to uncover the callback methods that are invoked when
objects are serialized and deserialized. Since call graphs are a core data structure for multiple type of analysis
(e.g., vulnerability detection), an appropriate analysis cannot be performed since the call graph does not capture
hidden (vulnerable) paths that occur via callback methods. In this paper, we present Seneca, an approach for
handling serialization with improved soundness in the context of call graph construction. Our approach relies
on taint analysis and API modeling to construct sound call graphs. We evaluated our approach with respect to
soundness, precision, performance, and usefulness in detecting untrusted object deserialization vulnerabilities.
Our results show that Seneca can create sound call graphs with respect to serialization features. The resulting
call graphs do not incur significant overhead and was shown to be useful for performing identification of
vulnerable paths caused by untrusted object deserialization.

CCS Concepts: • Software and its engineering→ Automated static analysis; Software verification and

validation.

Additional Key Words and Phrases: object serialization, taint analysis, call graphs

ACM Reference Format:

Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri. 2024. Seneca: Taint-Based Call Graph Construction for
Java Object Deserialization. Proc. ACM Program. Lang. 1, OOPSLA, Article 1 (January 2024), 27 pages.

1 Introduction

Static program analysis is a key component of today’s software analysis tools that bring automation
into activities such as defect localization and/or finding (e.g., [Dolby et al. 2007; Thaller et al.
2020]), vulnerability detection (e.g., [Jovanovic et al. 2006; Liu Ping et al. 2011]), information
flow analysis [Sridharan et al. 2011], code refactoring (e.g., [Khatchadourian et al. 2019]), code
navigation (e.g., [Feldthaus et al. 2013]), code clone finding (e.g., [Wyrich and Bogner 2019]), and
optimization [Hines et al. 2005]. Such tools often perform multiple types of inter-procedural
analysis, that leverage call graphs – data structures that indicate caller-callee relationships [Grove
and Chambers 2001]. However, prior works have demonstrated that constructing a call graph for
object-oriented programs is often non-trivial, expensive and/or non-feasible due to the usage of
many dynamic programming language constructs. For instance, native calls, reflection, and object
serialization make it challenging to statically construct a sound call graph [Ali et al. 2019; Kummita
et al. 2021; Reif et al. 2019, 2018; Smaragdakis et al. 2015; Sridharan et al. 2013].

Authors’ addresses: Joanna C. S. Santos, Department of Computer Science and Engineering, University of Notre Dame, Notre
Dame, IN, 46556, USA, joannacss@nd.edu; Mehdi Mirakhorli, Department of Information and Computer Sciences, University
of Hawaii at Manoa, 1680 East-West Road, Honolulu, HI, 96822, USA, mehdi23@hawaii.edu; Ali Shokri, Department2a,
Virginia Tech, Street2a Address2a, City2a, State2a, Post-Code2a, USA, Email:ashokri@vt.edu.

2024. 2475-1421/2024/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0001-8743-2516
HTTPS://ORCID.ORG/0000-0003-3470-6856
HTTPS://ORCID.ORG/0000-0002-9758-3091
https://orcid.org/0000-0001-8743-2516
https://orcid.org/0000-0003-3470-6856
https://orcid.org/0000-0002-9758-3091
https://doi.org/

1:2 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

These programming constructs are heavily used in contemporary software systems as they enable
the developers to link/load new class libraries, methods, and objects and extend the programs’
functionalities [Landman et al. 2017; Reif et al. 2019]. Ignoring such constructs leads to unsound

call graphs in which feasible runtime paths are missed, and call graphs cannot be used to infer the
possible execution from the code [Reif et al. 2019, 2018; Sridharan et al. 2013]. To tackle this problem,
previous works explored certain classes of language features, such as reflection features [Bodden
et al. 2011; Li et al. 2014, 2019; Smaragdakis et al. 2015], native (opaque) code [Smaragdakis et al.
2015], dynamic proxies [Fourtounis et al. 2018], and programs with Remote Method Invocation
(RMI) [Sharp and Rountev 2006]. However, as demonstrated by Reif et al. [Reif et al. 2019, 2018], a
powerful and frequently used programming construct that has been left out from the programming
analysis techniques is serialization (and deserialization) of objects.
Object serialization is the process of converting (the state of) an object into an abstract repre-

sentation (e.g., a byte stream or JSON, etc.). The reverse process of reconstructing objects from its
abstract representation is called deserialization. This is a widely used mechanism for storing and
preserving objects in files, memory, or database as well as for transporting them across machines,
enabling remote interaction among processes and many more. For example, the Android API
provides a Bundle object which can be used for inter-process communication between apps as
well as Android’s OS with an individual app via their serialization and deserialization [Arzt et al.
2014; Enck et al. 2014]. Moreover, object (de)serialization is also used to improve the system’s
performance by saving objects for later retrieval, e.g., saving a trained machine learning model to
be used later without the need to retrain the algorithm. Serializing an object has other advantages,
such as being readable by applications in other languages. For instance, JavaScript running in a
web browser can natively serialize and deserialize objects to and from JSON, therefore interact
with other applications written non-JavaScript languages.

Although object serialization is widely used in many languages and commonly adopted by
programmers, static analyzers do not fully cover analysis of programs with this construct yet [Reif
et al. 2019, 2018]. This is particular important considering the spike of vulnerabilities related
to untrusted object deserialization [Muñoz and Schneider 2018; Sayar et al. 2023; Schneider and
Muñoz 2016] that cannot be automatically detected because call graphs are unsound. For example,
Apache’s Log4j software library (versions 2.0-beta9 to 2.14.1) had an untrusted object deserialization
vulnerability that allowed remote code execution. This was a critical vulnerability that affected
several software systems.

As demonstrated by previous studies on the soundness of call graph construction approaches [Reif
et al. 2019, 2018]— guaranteeing that all possible behaviors are modeled in a call graph — state-of-the-
art techniques do not support serialization-related operations. They fall shortly in having nodes and
edges that represent callback methods that are invoked during the serialization or deserialization
of objects. There are multiple reasons on why it is hard to handle this language construct:

— Serialization and deserialization uses several overridable callback method(s). These call back meth-
ods are invoked by the Java API using “non-trivial” reflective calls that current techniques [Land-
man et al. 2017] for taming reflection do not address. Therefore, the resulting call graph under-
approximate the program’s behavior; they miss potential program paths through these call back
methods.

— The invoked callbacks during deserialization methods depend on the received object, which is
coming from an external stream. The values and internal field types are only known at runtime
when the object deserialization occurs.

— The external stream may include objects whose types are not observed statically, i.e., they are
available in the classpath (imported libraries, or Java built-in API) but were never actually used

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:3

(instantiated) in the application scope. A typical static analysis would consider these types as
unused.

Therefore, existing techniques on addressing reflections has failed to address call-graph genera-
tion with the presence of object serialization/de-serialization [Reif et al. 2019]. As such, potential
program flows are disregarded in existing call graph construction algorithms. Since the call graph
is a core data structure in performing many inter-procedural code analyses, the underlying client
would suffer with the unsoundness. In use-cases such as detection of untrusted deserialization
vulnerabilities, an appropriate analysis cannot be performed since the call graph does not capture
hidden (vulnerable) paths that occur via callback methods. There are two algorithms that (partially)
handle serialization constructs (i.e., CHA [Dean et al. 1995] and RTA [Bacon and Sweeney 1996]) but
they are imprecise; they abstract program executions to consider more paths than those feasible in
the program. Therefore, they introduce spurious nodes and edges, rendering large call graphs. Relying
on such algorithms for downstream analyses (e.g., vulnerability detection) makes the analysis
imprecise, resulting in a high amount of false positives.
A recent line of work [Santos et al. 2021, 2020], presented an approach (named Salsa) for

providing support for serialization-related features. Although Salsa aids the static analyses of
programs that uses Java’s serialization/deserialization API, it is not enough to find hidden (poten-
tially) malicious paths in the program. Salsa relies on API modeling for abstracting the serializa-
tion/deserialization protocol which dictates callback methods control and data flow. Specifically, it
relies on downcasts in the program to infer the callbacks invoked during deserialization. However,
malicious objects often violate downcasts and are crafted in such way that it triggers the exploit
during deserialization, i.e., the exploit executes before the downcast is performed [Dietrich et al.
2017a].
Therefore, we introduce in this paper Seneca, a novel approach that handles the challenge of

constructing call graphs for programs that uses serialization features. Specifically, we are focusing
on improving the call graph’s soundness for Java programs with respect to serialization and deserial-
ization callbacks without greatly affecting its precision. Seneca performs a novel taint-based call
graph construction, which relies on the taint state of variables when computing possible
dispatches for callback methods.
The contributions of this work are:

— a novel taint-based call graph construction algorithm to improve call graphs’ soundness with
respect to deserialization callbacks. It is agnostic to the underlying pointer analysis method used
to construct a call graph, and it is meant to complement them.

— an evaluation of the approach’s soundness, precision, and scalability. Our experiments demon-
strated that our approach soundly handled all the six different callbacks that can be invoked
during serialization or deserialization.

— a publicly available implementation of Seneca1.

The rest of this paper is organized as follows: Section 2 describes the serialization and deserial-
ization mechanism and the challenges in creating a call graph that is sound with respect to this
feature. Section 3 explains our approach. Subsequently, Section 4 presents the evaluation of the
approach whereas Section 5 presents the results. Section 6 contextualizes our approach within the
state-of-the art. Section 7 concludes the paper and make final considerations.

1The scripts to reproduce the paper results are currently available on an anonymous repository SenecaRepo. The source
code for Seneca will be released upon publication and submitted for artifact evaluation

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

SenecaRepo

1:4 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

2 Background

Multiple programming languages (e.g., Ruby, Python, PHP, and Java) allow objects to be converted
into an abstract representation, a process called object serialization (or “marshalling”). The process
of reconstructing an object from its underlying abstract representation is called object deseri-

alization (or “unmarshalling”). Serialization and deserialization of objects are widely used for
inter-process communication and for improving the codes’ performance by saving objects to be
reused later (e.g., saving machine learning models [Ten 2023]).
During object serialization/deserialization, methods from the objects’ classes may be invoked.

For instance, classes’ constructors, getter/setter methods, or methods with specific signatures
may be invoked when reconstructing the object. These are the callback methods of the serializa-
tion/deserializationmechanism. Each programming language has their own serialization/deserialization
protocol, abstract representation, and callback methods. The Java’s default serialization and deseri-
alization mechanism is thoroughly described at their specification page [Oracle 2010]. We briefly
present this mechanism in the next subsection.

2.1 Java Serialization API

The default Java’s Serialization API converts a snapshot of an object graph into a byte stream.
During this process only data is serialized (i.e., the object’s fields) whereas the code associated with
the object’s class (i.e., methods) is within the classpath of the receiver [Schneider and Muñoz 2016].
All non-transient and non-static fields are serialized by default.

The classes ObjectInputStream and ObjectOutputStream can be used for deserializing and
serializing an object, respectively. They can only serialize/deserialize objects whose class implements
the java.io.Serializable interface. If implemented by a Serializable class, the methods listed
below can be invoked by Java during object serialization and/or deserialization:
• void writeObject(ObjectOutputStream): it customizes the serialization of the object’s state.
• Object writeReplace(): this method replaces the actual object that will be written in the
stream.
• void readObject(ObjectInputStream): it customizes the retrieval of an object’s state from
the stream.
• void readObjectNoData(): in the exceptional situation that a receiver has a subclass in its
classpath but not its super class, this method is invoked to initialize the object’s state.
• Object readResolve(): this is the inverse of writeResolve. It allows classes to replace a
specific instance that is being read from the stream.
• void validateObject(): it validates an object after it is deserialized. For this callback to be
invoked, the class has to also implement the ObjectInputValidation interface and register the
validator by invoking the method registerValidation from the ObjectInputStream class.
Figures 1 and 2 depicts the sequence of these callback methods invocations. As depicted in this

figure, during serialization of an object, the callback methods writeReplace and writeObject are
invoked (if these are implemented by the class of the object being deserialized). Similarly, during
object deserializaton, four callback methods can be invoked, namely, readObject, readObjectNoData,
readResolve, and validateObject.

2.2 Demonstrative Example

Listing 1 has three serializable classes2: Dog, Cat and Shelter. Two of these classes have serial-
ization callback methods (lines 5-10 and 13-14). The code at line 21-26 serializes a Shelter object

2We only show their fields and callback methods due to space constraints.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:5

:ObjectOutputStream

writeClassDesc(...)

:SerializableClass

writeReplace(...)

:ApplicationClass

writeObject(<	object	>)

writeObject(...)

1 Write	object	to	input	stream

2 Write	class	descriptor
to	the	stream

4 Restore	object's	fields

3 Replace	written	Object

Fig. 1. Callbacks invoked during serialization

:ObjectInputStream

readClassDesc(...)

:Serializable:ApplicationClass

reconstructed	object

readObject()

readObject(...)

1 Read	object	from
input	stream

2
Read	class	descriptor
from	the	stream

3 Restore	object's	fields

4 Initialize	object's	fields

5 Replace	restored	object

6 Validate	object

7 Cast	and	
use	the	object

:ObjectInputValidation

readResolve(...)

readObjectNoData(...)

validateObject()

Fig. 2. Callbacks invoked during deserialization

1 class Pet implements Serializable {
2 protected String name;
3 }
4 class Cat extends Pet{
5 private void readObject(ObjectInputStream s){
6 /* ... */
7 }
8 private void writeObject(ObjectOutputStream s){
9 /* ... */
10 }
11 }
12 class Dog extends Pet{
13 private Object readResolve(){ /* ... */ }
14 private Object writeReplace(){ /* ... */ }
15 }
16 class Shelter implements Serializable{
17 private List<Pet> pets;
18 }

19 class SerializationExample{
20 public static void main(String[] args) throws Exception {
21 Shelter s1 = new Shelter(Arrays.asList(new Dog("Max"),
22 new Cat("Joy")));
23 File f = new File("pets.txt");
24 FileOutputStream fos = new FileOutputStream(f);
25 ObjectOutputStream out = new ObjectOutputStream(fos);
26 out.writeObject(s1);
27 }
28 }
29 class DeserializationExample{
30 public static void main(String[] args) throws Exception {
31 File f = new File("pets.txt");
32 FileInputStream fs = new FileInputStream(f);
33 ObjectInputStream in = new ObjectInputStream(fs);
34 Shelter s2 = (Shelter) in.readObject();
35 }
36 }

Listing 1. Object serialization and deserialization example

s1 into a file, whose path is provided as program arguments. The code instantiates a FileOutput-
Stream and passes the instance to an ObjectOutputStream’s constructor during its instantiation.
Then, it calls writeObject(s1), which serializes s1 as a byte stream and saves it into a file. Since
the object s1 has a list field (pets) that contains two objects (a Cat and a Dog instance) the callback
methods of these classes invoked.

The mainmethod at line 30 deserializes this object from the file. It creates an ObjectInputStream
instance and invokes the method readObject(), which returns an object constructed from the
text file. The returned object is casted to the Shelter class type. During the deserialization, the
methods readObject and readResolve from the Cat and Dog classes are invoked, respectively.

2.2.1 Untrusted Object Deserialization To illustrate how a seemingly harmless mechanism can lead
to serious vulnerabilities, consider the case that the program in Listing 1 contains two more serial-
izable classes (CacheManager and Task), as shown in Listing 2. An attacker would create a Cache-
Manager object (cm) as shown in Figure 3. Then, the attacker serializes and encodes this malicious
object (cm) into a text file and specifies it as a program argument for the main method in Listing 1.
When the program reads the object from the file, it triggers the chain of method calls depicted in

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

1:6 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

8 InetSocketAddress a = new InetSocketAddress(bis);
9 if (channel.connect(true)!= null) {

10 InputStream is = channel.socket().getInputStream();
11 ObjectInput in = new ObjectInputStream("localhost", 12345);
12 User u = (User) in.readObject();
13 //...
14 } else {
15 // …
16 }
17
18 } //...
19
20 }

CacheManager cmdTask = new CommandTask("calc.exe");
CacheManager cm = new CacheManager(cmdTask);

⇩
Serialized Malicious Object (in Base 64):
rO0ABXNyAAxDYWNoZU1hbmFnZXKJEnhhKTAgjQIAAUwACGluaXR
Ib29rdAAUTGphdmEvbGFuZy9SdW5uYWJsZTt4cHNyAAtDb21tYW
5kVGFza+/CvHajIAP1AgABTAAHY29tbWFuZHQAEkxqYXZhL2xhb
mcvU3RyaW5nO3hwdAAIY2FsYy5leGU=

⇩
Call Stack:
IndexServlet.doGet(…)
 java.io.ObjectInputStream.readObject()
 CacheManager.readObject()
 CommandTask.run()
 Runtime.exec(…)

Malicious Object:
Task t = new Task("rm -rf . ");
CacheManager cm = new CacheManager(t); ⇨

File.ser:
rO0ABXNyAAxDYWNoZU1hbmFnZ
XKJEnhhKTAgjQIAAUwACGluaX
RIb29rdAAUTGphdmEvbGFuZy9
SdW5uYWJsZTt4c…

⇨

Call Stack:
DeserializationExample.main(…)
 java.io.ObjectInputStream.readObject()
 CacheManager.readObject()
 Task.run()
 Runtime.exec(…)

Fig. 3. Malicious serialized object used to trigger a remote code execution

Figure 3. This sequence of method calls ends in an execution sink (Runtime.getRuntime.exec()
on line 8 of the Task class in Listing 2).

1 public class CacheManager implements Serializable {
2 private Runnable initHook;
3 public CacheManager(Runnable initHook) {
4 this.initHook = initHook;
5 }
6 private void readObject(ObjectInputStream ois) {
7 ois.defaultReadObject();
8 initHook.run();
9 }
10 }

1 public class Task implements Runnable, Serializable {
2 private String command;
3
4 public Task(String command) {
5 this.command = command;
6 }
7 public void run() {
8 Runtime.getRuntime().exec(command);
9 }
10 }

Listing 2. Gadget classes that can be used to exploit an untrusted object deserialization vulnerablity

Although this request with a malicious serialized object results in a ClassCastException,
the malicious command will be executed anyway, because the type cast check occurs after the
deserialization process took place. As we can see from this example, classes can be specially
combined to create a chain of method calls. These classes are called “gadget classes” as they are
used to bootstrap a chain of method calls that will end in an execution sink.

2.3 Challenges for Call Graph Construction

From the examples shown in Section 2.2, we observe two major challenges that should be handled
by a static analyzer in order to construct a sound call graph with respect to serialization-related
features: (i) the callback methods that are invoked during object serialization/deserialization; and
(ii) the fields within the class can be allocated in unexpected ways, and they dictate which
callbacks are invoked at runtime. For instance, if the code snippet in Listing 1 had only the cat
object in the list (line 22), then the calls to readResolve/writeReplace methods in Dog would not
be made.

Existing pointer analysis algorithms leverage on allocation instructions (i.e., new T()) within the
program to infer the possible runtime types for objects [Bastani et al. 2019; Feng et al. 2015; Heintze
and Tardieu 2001; Hind 2001; Kastrinis and Smaragdakis 2013; Lhoták and Hendren 2006; Rountev
et al. 2001; Smaragdakis and Kastrinis 2018]. However, as we demonstrated in the examples, the
allocations of objects and their fields and invocations to callback methods are made on-the-fly by
Java’s serialization/deserialization mechanism. During static analysis, we can only pinpoint that
there is an InputStream object that provides a stream of bytes from a source (e.g., a file, socket,
etc.) to an ObjectInputStream instance, but the contents of this stream is uncertain. Hence, the
deserialized object and its state are unknown (i.e., the allocations within its fields). As a result,
existing static analyses fail to support serialization-related features.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:7

Output

Input

Entrypoints

Program

Pointer
Analysis
Method

Entrypoints
Extraction

add
entrypoints
to worklist

Work list
of methods

Pointer
Analysis

Method
Dispatchadd more methods

to be explored
context, object, invocation

void main(String[] args)
 throws Exception {
 // ...
}

Serialization points Deserialization points

call graph i
Output Stream

Modeling

Taint-based
Input Stream

Modeling
Call graph

Taint
Analysis

Tainted Pointers

out.writeObject(o) in.readObject()

Fig. 4. Our serialization-aware approach for constructing call graphs (Seneca)

3 Seneca: Taint-Based Call Graph Construction for Object Deserialization

To support serialization-related features, Seneca employs an on-the-fly iterative call graph con-
struction technique [Grove et al. 1997], as depicted in Figure 4. It involves two major phases: 1

Iterating over a worklist of methods to create the initial call graph using an underlying pointer
analysis method; 2 Refinement of the initial call graph by making a set of assumptions performed
iteratively until a fixpoint is reached (i.e., when there are no more methods left in the worklist to
be visited).

3.1 Phase 1: Initial Call Graph Construction

Seneca first takes as input a CSV file with method signatures for the program’s entrypoints , which
are the methods that start the program’s execution (e.g., main()). The result of this step is a set
of entrypoint methods 𝑚 ∈ 𝐸 added to our worklist W. This worklist tracks the methods 𝑚
under a context 𝑐 that have to be traversed and analyzed, i.e., ⟨𝑚,𝑐⟩ ∈ W, where a context 𝑐 is
an abstraction of the program’s state. Since the worklistW tracks methods within a context, the
entrypoints methods added toW are assigned a global context, which we denote as ∅. Hence, the
worklist is initialized as:

W = {⟨𝑚, ∅⟩ | ∀𝑚 ∈ 𝐸}
Starting from the entrypoint methods identified, Seneca constructs an initial (unsound) call

graph (i.e., call graph0) using the underlying pointer analysis algorithm selected by the client
analysis (e.g., n-CFA). Each method in the worklist ⟨𝑚,𝑐⟩ ∈ W is converted into an Intermediary
Representation (IR) in Static Single Assignment form (SSA) [Cytron et al. 1991]. Each instruction in
this IR is visited following the rules by the underlying pointer analysis algorithm 3. When analyzing
an instance method invocation instruction (i.e., , x = o.g(𝑎1,𝑎2,...,𝑎𝑛)), Seneca computes the
possible dispatches (call targets) for the method 𝑔 as follows: targets = 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(𝑝𝑡 (⟨𝑜, 𝑐⟩), 𝑔).
This dispatch mechanism takes into account the current points-to set for the object 𝑜 at the current
context 𝑐 as well as the declared target 𝑔. If the invocation instruction occurs at a serialization or
deserialization point , then the 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ function implemented by our approach creates a synthetic
method to model the runtime behavior for the readObject() and writeObject() from the classes
ObjectInputStream and ObjectOutputStream, respectively.
These synthetic models are initially created without instructions. Their instructions are con-

structed during the call graph refinement phase (Phase 2). It is important to highlight that the
calls to synthetic methods (models) are 1-callsite-sensitive [Sridharan et al. 2013]. We use this
context-sensitiveness policy to account for the fact that one can use the same ObjectInput-
Stream/ObjectOutputStream instance to read/write multiple objects. Thus, we want to disam-
biguate these paths in the call graph.
3We point the reader to the work by Sridharan et al. [Sridharan et al. 2013] which provides a generic formulation for multiple
points-to analysis policies.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

1:8 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

As a result of this first iteration over Phase 1, we obtain the initial call graph (𝑔0) and a list of
the call sites at the serialization and deserialization points.

3.2 Phase 2: Call Graph Refinement

In this phase, we take as input the current call graph 𝑔𝑖 which contains as nodes actual methods in
the application and synthetic methods created by our approach in the previous phase.

3.2.1 Object Serialization Abstraction Algorithm 1 indicates the procedure for modeling object
serialization. For each instruction at the serialization points, we obtain the points-to set for the object
𝑜𝑖 passed as the first argument to writeObject(Object). The points-to set 𝑝𝑡 (⟨𝑜𝑖 , 𝑐⟩) indicates the
set of allocated types 𝑡 for 𝑜𝑖 under context 𝑐 . Since the writeObject’s argument is of type Object,
we first add to𝑚𝑠 a type cast instruction that refines the first parameter to the type 𝑡 . In case the
class type 𝑡 implements the writeObject(ObjectInputStream) callback, we add an invocation
instruction from𝑚𝑠 targeting this callback method.

Subsequently, we iterate over all non-static fields 𝑓 from the class 𝑡 and compute their points-to
sets (see the foreach in line 10). If the concrete types allocated to the field contains callback
methods, we add three instructions: (i) an instruction to get the instance field 𝑓 from the object; (ii)
a downcast to the field’s type; (iii) an invocation to the callback method from the field’s declaring
class.

It is important to highlight the edge case scenariowhen the object being serialized is a java.util.Collection
or a java.util.Map. In this case, Seneca tracks what objects were added to the collection in order to
add invocations to their callback methods (if provided).
After adding all the needed instructions to the synthetic method𝑚𝑠 , we re-add the synthetic

method to Seneca’s worklist (as depicted in Figure 4).

Algorithm 1: Object serialization modeling
Input: Set of invocation instructions to writeObject: I ;

Project’s initial call graph: G;
Output: Set of refined synthetic models𝑀𝑠

1 foreach 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 in 𝐼 do

2 𝑜𝑖 ← argument(1,𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛)
3 𝑐 ← context(𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛)
4 𝑚𝑠 ← target(𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛)
5 foreach 𝑡 ∈ 𝑝𝑡 (⟨𝑜𝑖 , 𝑐 ⟩) do
6 addTypeCast(𝑚𝑠 ,𝑡)
7 if 𝑡 has a callback method then

8 addInvoke(𝑚𝑠 , 𝑡 .𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘)
9 end

10 foreach 𝑓 ∈ 𝑓 𝑖𝑒𝑙𝑑𝑠 (𝑡) do
11 foreach 𝑓 𝑖𝑒𝑙𝑑𝑇 𝑦𝑝𝑒 ∈ 𝑝𝑡 (⟨𝑜𝑖 .𝑓 , 𝑐 ⟩) do
12 if 𝑓 𝑖𝑒𝑙𝑑𝑇 𝑦𝑝𝑒 has callback then

13 addGetField(𝑚𝑠 , 𝑓)
14 addTypeCast(𝑚𝑠 , 𝑓 𝑖𝑒𝑙𝑑𝑇 𝑦𝑝𝑒)
15 addInvoke(𝑚𝑠 , 𝑓 𝑖𝑒𝑙𝑑𝑇 𝑦𝑝𝑒.𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘)
16 end

17 end

18 end

19 end

20 addToWorkList(𝑚𝑠 ,c)
21 end

3.2.2 Taint-Based Object Deserialization Abstraction Starting from the deserialization points
identified, Seneca computes the call graph on-the-fly by iteratively solving constraints over the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:9

Table 1. Taint propagation rules employed by Seneca when building call graphs.

Instruction at method

𝑚 in a context 𝑐
Taint propagation Rule

x = T.f 𝜏 (𝑥) = 𝜏 (𝑥) ∨ 𝜏 (𝑇 .𝑓) [Load-Static]
x = y.f 𝜏 (𝑥) = 𝜏 (𝑥) ∨ 𝜏 (𝑦) ∨ 𝜏 (𝑦.𝑓) [Load-Instance]
x.f = y 𝜏 (𝑥.𝑓) = 𝜏 (𝑥.𝑓) ∨ 𝜏 (𝑦) [Store-Instance]
T.f = y 𝜏 (𝑇 .𝑓) = 𝜏 (𝑇 .𝑓) ∨ 𝜏 (𝑦) [Store-Static]

x = o.g(a1,· · · ,an)

∀𝑎𝑖 ∈ 𝐴𝑗 , ∀𝑝𝑖 ∈ 𝑃𝑔 : 𝜏 (𝑝𝑖) = 𝜏 (𝑝𝑖) ∨ 𝜏 (𝑎𝑖) , 𝜏 (𝑔𝑡ℎ𝑖𝑠) = 𝜏 (𝑔𝑡ℎ𝑖𝑠) ∨ 𝜏 (𝑜) [Instance-Call-Args]
𝜏 (𝑥) = 𝜏 (𝑥) ∨ 𝜏 (𝑔𝑟𝑒𝑡) [Instance-Call-Return]
Side Effect: 𝜏 (𝑜) = 𝑡𝑟𝑢𝑒 →𝑝𝑡 (⟨𝑜, 𝑐 ⟩) = 𝑝𝑡 (⟨𝑜, 𝑐 ⟩)∪𝑡𝑎𝑟𝑔𝑒𝑡𝑇 𝑦𝑝𝑒𝑠 (𝑜, 𝑐, 𝑔) [Call-Side-Effect]

x = T.g(a1,· · · ,an)
∀𝑎𝑖 ∈ 𝐴𝑗 , ∀𝑝𝑖 ∈ 𝑃𝑔 : 𝜏 (𝑝𝑖) = 𝜏 (𝑝𝑖) ∨ 𝜏 (𝑎𝑖) [Static-Call-Args]
𝜏 (𝑥) = 𝜏 (𝑥) ∨ 𝜏 (𝑔𝑟𝑒𝑡) [Static-Call-Return]

return x
𝜏 (𝑚𝑟𝑒𝑡) = 𝜏 (𝑚𝑟𝑒𝑡) ∨ 𝜏 (𝑥) [Return]
Side Effect:W =W ∪𝐶𝑚 [Return-Side-Effect]

x = y[i] 𝜏 (𝑥) = 𝜏 (𝑥) ∨ 𝜏 (𝑦) [Array-Load]
x[i] = y 𝜏 (𝑥) = 𝜏 (𝑥) ∨ 𝜏 (𝑦) [Array-Store]

ϕ = v1,v2,· · · ,vn 𝜏 (𝜙) = 𝜏 (𝑣1) ∨ 𝜏 (𝑣2) ∨ . . . ∨ 𝜏 (𝑣𝑛) [Phi]
x = (TypeCast) y 𝜏 (𝑥) = 𝜏 (𝑥) ∨ 𝜏 (𝑦) [Checkcast]

instructions. Each method in the worklist ⟨𝑚,𝑐⟩ ∈ W is converted into an Intermediary Represen-
tation (IR) in Single Static Assignment form (SSA) [Cytron et al. 1991; Rosen et al. 1988]. Moreover,
these methods have special variables to denote their return value𝑚𝑟𝑒𝑡 and the this pointer𝑚.𝑡ℎ𝑖𝑠

(for non-static methods).
For each method in the worklistW, Seneca performs pointer analysis in parallel with taint

analysis to compute the taint state of variables and points-to sets. Each instruction in the method’s
IR is visited following the rules by the underlying pointer analysis [Sridharan et al. 2013] and our
taint analysis algorithm. Thus, each pointer in a program has an associated taint state 𝜏 (𝑝), where
𝜏 (𝑝) = 𝑡𝑟𝑢𝑒 denotes a tainted pointer and 𝜏 (𝑝) = 𝑓 𝑎𝑙𝑠𝑒 denotes an untainted (safe) pointer. Below,
we provide the formulation of our taint analysis policy [Schwartz et al. 2010].
▶ Taint Introduction: As described before, deserialization points are replaced by a synthetic

method, i.e., a “fake call graph node” [Sridharan et al. 2013]. It is a synthetic method created on-
the-fly to model: (i) the instantiation of the class 𝐺𝑐 that contains a callback method(s)𝑚𝑐 ; (ii) the
invocation to the callback method(s) using the newly created object; and (iii) the instantiation
of any parameters for the magic methods. It is important to highlight that in the Step (i), when
instantiating the callback method’s object, we invoke the class’ default constructor. This is to follow
the Java’s deserialization process (see Section 2).

Therefore, Seneca initializes the following pointers as tainted:

- The pointer for x in the instruction x = new 𝐺𝑐(), where 𝐺𝑐 denotes a class that contains a
deserialization callback method (e.g., readResolve):

𝜏 (𝑥) = true

- The pointers for all the fields of x:

∀𝑓𝑖 ∈ 𝑓 𝑖𝑒𝑙𝑑𝑠 (𝑥) : 𝜏 (𝑥 .𝑓𝑖) = true

- The this pointer in the callback method𝑚𝑐 that is invoked:

𝜏 (𝑚𝑐 .𝑡ℎ𝑖𝑠) = true.

▶ Taint Propagation Rules:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

1:10 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

As the method’s instructions are parsed, we employ the rules listed in Table 1 to compute the
taint states of the program’s variables. As shown in Table 1, the rules for assignment instructions
are as follows:

lhs = rhs −→ 𝜏 (𝑙ℎ𝑠) = 𝜏 (𝑙ℎ𝑠) ∨ 𝜏 (𝑟ℎ𝑠)
That is, the pointer for the left-hand side is tainted if the pointer for the right-hand side is also
tainted (or the left-hand side itself was already previously tainted). This is the case for the rules
Load-Static, Load-Instance, Store-Instance, Store-Static, Static-Call-Return, Return,
Array-Load, Array-Store, and Checkcast.

Phi functions (𝜙) are special statements that are inserted into a method’s SSA form to represent
possible values for a variable depending on the control flow path taken. The taint for the pointer of
phi 𝜏 (𝜙) will be tainted if any of the possible variables’ pointers are tainted.
When there is a method invocation, it can either be a static invocation or an invocation to

a instance method. In both cases, each passed parameter 𝑝𝑖 is assigned to the corresponding
argument 𝑎𝑖 from the invoked method. Consequently, the rules Instance-Call-Args, and Static-
Call-Args are propagated likewise assignment instructions. Notice, however, that for instance
methods there is a special variable𝑚𝑡ℎ𝑖𝑠 denoting the “this” pointer for that method. Hence, the
rule Instance-Call-Args propagates the taint from the caller object to the “this” pointer 𝜏 (𝑔𝑡ℎ𝑖𝑠).

It is worth to highlight that taint is never removed from a pointer. Although this will make the
underlying call graph more imprecise, our goal is to soundly reason over all possible runtime paths.
–Side Effects to the Pointer Analysis Engine:

Method invocations and return instructions introduce side-effects to the static analysis engine
state, labelled in Table 1 as Call-Side-Effect and Return-Side-Effect, respectively.
- Instance method invocations: When there is an instance method invocation 𝑜.𝑔(...) and the object
𝑜 is tainted, then Seneca computes the possible method targets for the call 𝑜.𝑔(...) soundly. The
dispatch is computed as described below:
(1) it obtains the static type 𝑡 for 𝑜 , i.e. 𝑡 = 𝑡𝑦𝑝𝑒 (𝑜);
(2) it extracts the set of classes based on the inheritance hierarchy for 𝑇 (i.e., 𝑇 = 𝑐𝑜𝑛𝑒 (𝑡), where

𝑐𝑜𝑛𝑒 (𝑡) returns the list of all descendants of 𝑡 , including 𝑡 itself [Tip and Palsberg 2000]).
(3) it computes the subset 𝐶 ⊆ 𝑇 that includes only the types (classes) which provide a concrete

implementation matching the signature of the invoked method 𝑔.
(4) it computes the subset 𝐴𝑡 ⊆ 𝐶 which include only classes that are accessible to 𝑡 according to

Java’s visibility rules4.
(5) finally, the possible target methods are all the methods from the set 𝐴𝑡 in which their classes

are serializable (i.e., implements the serializable interface directly or via inheritance).
As one can notice, this dispatch is similar to the one employed by Class Hierarchy Analysis

(CHA). The main difference are in steps (4) and (5), where Seneca takes into account class visibility
rules as well as whether the type is serializable.
Once the dispatch is computed (targetTypes(o,g) in Call-Side-Effect) the points to set for

𝑝𝑡 (⟨𝑜, 𝑐⟩) adds all the elements from 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑦𝑝𝑒𝑠 (𝑜, 𝑔).
- Method return values: In a scenario where a method𝑚 has a tainted return value 𝜏 (𝑚𝑟𝑒𝑡) = true,
all the callers of𝑚 are re-added to theW. Since the return is tainted, we need to back propagate
this information to all the callers of𝑚 to ensure that the rules Instance-Call-Return and Static-
Call-Return are applied correctly.
— Context-sensitivity for Tainted Method Calls Our taint-based call graph construction algo-
rithm is agnostic to the pointer analysis policy (e.g., 0-1-CFA). This means that a client analysis
4Visibility rules are thoroughly described in the language specification https://docs.oracle.com/javase/specs/jvms/se7/html/
jvms-4.html#jvms-4.1-200-E.1

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.1-200-E.1
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.1-200-E.1

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:11

could choose to use a context insensitive analysis (e.g., 0-CFA). Since tainted pointers are likely to
have a large points-to set because we use a sound analysis to compute all possibilities for method
dispatches when the receiver object is tainted, we should avoid merging point-to-sets of these
tainted variables. Otherwise, the resulting pointer analysis would be too imprecise to be used by
downstream client analyses.

Therefore, we use 1-callsite-sensitivity for tainted method calls (even if we use an insensitive
analysis for all the other pointers).
▶ Demonstrative Example: Consider the code snippet in Listing 3. The class Main has a main
method that reads an object from a file, whose path is provided as a program argument. This
program contains other four classes (CacheManager, TaskExecutor, CommandTask, and Config).
We demonstrate Seneca’s taint-based deserialization modeling considering that we selected 0-1-
CFA as the main pointer analysis method.

1 class Main {
2 public static void main(String[] a)
3 throws Exception {
4 FileInputStream f=new FileInputStream(a[0]);
5 ObjectInputStream in=new ObjectInputStream(f);
6 Config obj = (Config) in.readObject();
7 }
8 }
9 class CommandTask
10 implements Runnable, Serializable {
11 private String cmd;
12 private TaskExecutor taskExecutor;
13 @Override
14 public void run() {
15 if (!cmd.isEmpty() && taskExecutor != null)
16 taskExecutor.executeCmd(cmd); /* site @24 */
17 }
18 }
19 class TaskExecutor implements Serializable {
20 public void executeCmd(String cmd) {
21 try {
22 Runtime rt = Runtime.getRuntime();
23 rt.exec(cmd);
24 } catch (IOException e) { }
25 }
26 }
27 class Config implements Serializable {
28 private String page ;

29 public void readObject(ObjectInputStream ois)
30 throws IOException, ClassNotFoundException {
31 ois.defaultReadObject();
32 Runtime rt = Runtime.getRuntime();
33 rt.exec("open http://localhost/" + page);
34 }
35 }

1 class CacheManager implements Serializable {

2 private Runnable task ;

3 private Runnable[] taskArray ;

4 private List<Runnable> taskList ;

5 private Set<Runnable> taskSet ;

6 private Map<String, Runnable> taskMap ;

7 private String os ;

8 private long timestamp ;

9 public void readObject(ObjectInputStream ois)
10 throws IOException, ClassNotFoundException {
11 ois.defaultReadObject();
12 Runnable r;
13 if(os.equals("windows") && task instanceof CommandTask){
14 r = getInitHook(); /* site @32 */

15 r.run();
16 }else {
17 r = getFromArray();
18 r.run(); /* site @46 */

19 r = getFromList();
20 r.run(); /* site @57 */

21 r = getFromSet();
22 r.run(); /* site @68 */

23 r = getFromMap();
24 r.run(); /* site @79 */
25 }
26 }
27 Runnable getInitHook(){ return task; }
28 Runnable getFromArray() { return taskArray[0]; }
29 Runnable getFromList() { return taskList.get(0); }
30 Runnable getFromSet() { return taskSet.iterator().next(); }
31 Runnable getFromMap() { return taskMap.get("xyz"); }
32 }

Listing 3. Walk-through example to demonstrate Seneca’s approach

Seneca first extracts the program’s entrypoints, provided as part of the analysis configuration.
In this example, the Main.main(String a[]) is specified as the main method. Therefore, the
Seneca’s worklist is initialized as:W = {⟨𝑀𝑎𝑖𝑛.𝑚𝑎𝑖𝑛(𝑆𝑡𝑟𝑖𝑛𝑔 𝑎[]), ∅⟩}. Seneca then proceeds to
iteratively compute the call graph by traversing each instruction for each method in the worklist.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

1:12 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

There are three method invocations on Main.main(): two invocations to the constructors
(<init>) of FileInputStream and ObjectInputStream classes followed by a call to the readOb-
ject()method from the ObjectInputStream class. The invocation to ObjectInputStream.readObject()
is replaced by Seneca with a model (synthetic) method that has the same signature, but it is initial-
ized without any instructions. At this stage, the call graph for this program after traversing the
main method looks like as shown in Listing 5. All these three call graph nodes discovered after
parsing Main.main() are added to the worklist to be processed (i.e., , FileInputStream.<init>(),
ObjectInputStream.<init>(), and ObjectInputStream.readObject().

Main.main(String[])
Context: Ø

FileInputStream.<init>(String)
Context: Ø

ObjectInputStream.<init>(InputStream)
Context: Ø

ObjectInputStream.readObject()
Context: Main.main(String[]) @ 21

‹ entrypoint ›

model method
(synthetic method)

Fig. 5. Initial call graph after parsing the Main.main() method in Listing 3

The instructions that are added to ObjectInputStream.readObject() relies on taint states
to infer callback methods that might by invoked during deserialization. Thus, when refining a
method model, Seneca considers that all serializable classes in the classpath could have its callbacks
invoked. By using this strategy, there are two possible callbacks that can be invoked: one from
Config and one from CacheManager. Hence, all of its instance fields are marked as tainted per the
taint introduction rules previous described (these are highlighted in red on Listing 3). Based on the
taint propagation rules specified on Listing 1, variables are then marked as tainted (these variables
that are tainted due to propagation are highlighted in cyan on Listing 3).
Recall that tainted invocations (i.e., an instruction such as obj.aMethod() in which obj is

tainted) are handled differently. Whereas the dispatch of non-tainted invocation will follow the
rules from the underlying pointer analysis policy, the dispatch for tainted invocations are computed
using a modified version of the CHA algorithm. Therefore, the computed call graph when using
the taint-based approach looks like as Listing 65. As shown in this image, the model method
includes the following instructions: an object instantiation for Config as well as CacheManager,
their constructors invocation, and invocations to their callback methods. Finally, the model method
returns a value that can either be an instance of Config or CacheManager. Notice that the phi
function (𝜙) added to indicate this possibility.

4 Evaluation

In this section, we introduce our research questions and describe our experiment setup and design
to answer those.

4.1 ResearchQuestions

This paper addresses the following research questions:
RQ1 Soundness. Does Seneca handle object deserialization soundly?

RQ2 Precision. Does an increase in the call graph’s soundness incur a significant loss in its precision?
RQ3 Scalability. Does Seneca scale well for real software systems?

RQ4 Usefulness. Is Seneca useful for a client analysis focused on vulnerability detection?

5Due to space constraints, we elide the “getter” calls as well as inner calls from primordial nodes (e.g., String.isEmpty())

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:13

Main.main(String[])
Context: Ø

FileInputStream.<init>(String)
Context: Ø

ObjectInputStream.<init>(InputStream)
Context: Ø

ObjectInputStream.readObject()
Context: Main.main(String[]) @ 21

User.<init>()
Context: [ObjectInputStream.readObject()@4] Object.<init>()

Context: Ø

Object ObjectInputStream.readObject(){
 v4 = new CacheManager; /* site @0 */
 v4.<init>(); /* site @1 */
 v4.readObject(v1); /* site @2 */
 v7 = new Config; /* site @3 */
 v7.<init>(); /* site @4 */
 v7.readObject(v1); /* site @5 */
 v10 = Φ(v4,v7); /* phi function */
 return v10;
}

CacheManager.<init>()
Context: [ObjectInputStream.readObject()@1]

CacheManager.readObject(ObjectInputStream)
Context: [ObjectInputStream.readObject()@2]

CommantTask.run()
Context: [CacheManager.readObject(...) @32]

CommantTask.run()
Context: [CacheManager.readObject(...) @57]

CommantTask.run()
Context: [CacheManager.readObject(...) @46]

CommantTask.run()
Context: [CacheManager.readObject(...) @79]

CommantTask.run()
Context: [CacheManager.readObject(...) @68]

TaskExecutor.executeCmd(String)
Context: [CommandTask.run() @24]

String.equals(Object)
Context: [CacheManager.readObject(...)@10]

String.isEmpty()
Context: [CommandTask.run()@4]

Runtime.getRuntime()
Context: Ø

Runtime.exec(String)
Context: Ø

<synthetic method>
<context>

<application method>
<context>

<primordial method>
<context>

Legend
‹ entrypoint ›

‹ sink ›

StringBuilder.<init>()
Context: Ø

Config.readObject(ObjectInputStream)
Context: [ObjectInputStream.readObject()@2]

StringBuilder.append(String)
Context: Ø

StringBuilder.toString()
Context: Ø

Fig. 6. Call graph for Listing 3 when using the taint-based strategy

To answer the aforementioned research questions, we developed a prototype for Seneca in Java
using IBM’s T. J. Watson Libraries for Analysis (WALA) [IBM [n.d.]]. It allows client analyses to
select a pointer analysis method that can either be 0-n-CFA, or n-CFA, where n is provided. We
explain in the next subsections the methodology and datasets used to answer each RQ.

4.2 Answering RQ1: Soundness

We aim to verify whether Seneca improves a call graph’s soundness with respect to deserial-
ization callbacks and how it compares with existing approaches [Reif et al. 2019, 2018; Santos
et al. 2021, 2020]. The soundness of a call graph construction algorithm corresponds to being
able to create a call graph that incorporate all possible paths (nodes and edges) that can arise at
runtime [Ali et al. 2019; Kummita et al. 2021]. In this work, we are specifically looking at improving
a call graph’s soundness to cover possible invocations that arise during object serialization and

deserialization. Therefore, we use two datasets to answer this first research question:
• Call Graph Assessment & Test Suite (CATS) [Eichberg 2020]: This dataset was released as
part of recent empirical studies [Reif et al. 2019, 2018] to investigate the soundness of the
call graphs computed by existing algorithms with respect to particular programming language
constructs. The CATS test suite6 was derived by an extensive analysis of real Java projects
to create test cases that are representative of common ways that projects use these language
constructs (e.g., lambdas, reflection, serialization, etc.). The dataset includes 9 test cases for
verifying the soundness of call graphs during serialization and deserialization of objects. Each
test case is a Java program with annotations that indicate the expected target for a given method
call. Table 2 provides an overview of the test cases available in the CATS test suit and what
aspects they aim to probe. Hence, in this first experiment, we run Seneca using two pointer
analysis configurations: 0-1-CFA, and 1-CFA. Then, we compare it against Salsa (0-CFA, 1-CFA),
a state-of-the-art tool, as well as the same algorithms used in the empirical study by Reif et

6This project was formerly known as the Java Call Graph Test Suite (JCG).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

1:14 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

Table 2. Test cases from the CATS Test Suite [Eichberg 2020] and which soundness aspect they aim to verify.

ID Description

Ser1 The code serializes an object whose class contains a custom writeObject method. It tests whether the call graph creates a node
for the writeObject(...) callback method that can be invoked by the writeObject method from the ObjectOutputStream class.

Ser2 Tests whether the call graph has nodes and edges for the writeObject callback method under the scenario that the call may be
invoked if a condition is true.

Ser3 Tests whether the call graph construction algorithm considers inter-procedural flow to soundly infer that the object’s writeOb-
ject(...) callback method will be invoked by the writeObject method from the ObjectOutputStream class.

Ser4 The code deserializes an object (without performing a downcast) whose class contains a custom readObject method. It tests
whether the call graph creates a node for the readObject(...) callback method that can be invoked by the readObject method
from the ObjectInputStream class.

Ser5 The code deserializes an object whose class contains a custom redObjectmethod. It tests whether the call graph creates a node for
the readObject(...) callback method that can be invoked by the readObject method from the ObjectInputStream class. Unlike
Ser4, this test case has a downcast to the expected type of the read object.

Ser6 Tests whether the call graph has nodes and edges for the writeReplace callback method that will be invoked during serialization.
Ser7 Tests whether the call graph has nodes and edges for the readResolve callback method that will be invoked during deserialization.
Ser8 Tests whether the call graph has nodes and edges for the validateObject callback method that will be invoked during deserial-

ization.
Ser9 Tests whether constructors of serializable classes are handled soundly. It checks whether the call graphmodels the runtime behavior,

which invokes the first default constructor that is not from a serializable superclass.

al. [Reif et al. 2019], namely Soot (CHA, RTA, VTA, and Spark), Wala (RTA, 0-CFA, 1-CFA, and
0-1-CFA), Doop (context-insensitive), and Opal (RTA).
— Metric: Likewise to the prior empirical study by Reif et al. [Reif et al. 2019, 2018], we compute
the number of failed and passed test cases for each approach as a way to investigate the soundness
of our approach.
• XCorpus dataset: Although the CATS dataset was carefully constructed to test call graph
construction algorithms with respect to programming language features, the test cases are small
programs (i.e., with few serializable classes). Therefore, to enhance our analysis, we used programs
available on the XCorpus dataset [Dietrich et al. 2017b]. We chose this dataset because it has been
widely used in prior related works [Fourtounis et al. 2018; Santos et al. 2021, 2020] and it was
manually curated to be representative of real Java projects. From this dataset, we selected a total
of 10 programs from the XCorpus dataset [Dietrich et al. 2017b] (listed in Table 3). We selected
these projects because they match the following criteria: (i) they perform object serialization
/ deserialization; (ii) they contain serializable classes that provide custom implementation for
callback methods; hence, they would be suitable to verify whether our approach can properly
compute a call graph that uncover hidden paths via callback methods.
For each of these 10 projects, we created a set of test cases that exercised the serialization and
deserialization of objects from the classes that contained custom callback methods. Each test case
serializes an object into a file, and then deserializes it back from this file, as shown in Listing 4.
The systematic process we followed to create these test cases were as follows. For each class in
the XCorpus program that had a custom callback method, we created a “simple” test case. This
“simple” test case returns a single instance from the class inside the method getObject(). We read
the project’s documentation to initialize the object’s fields correctly and avoid exceptions thrown
by the class’ constructor. We also created “composite” test cases in which the class instance is
wrapped into a collection, i.e., an ArrayList, a HashSet, a HashMap, or an array.
By following this systematic process, we create five test cases (1 “simple” test case, and 4 “com-
posite” ones) for each class with a custom callback in an XCorpus project. The list of XCorpus
programs and the number of test cases for each of them is shown in Table 3.
After creating these test cases, we execute them to extract their dynamic call graph (runtime
call graph). We implemented a JVMTI (Java Virtual Machine Tool Interface) agent in C to compute
these runtime call graphs. This implementation has an instrumentation agent that is attached to

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:15

1 public class TC<number> {
2 private static Object getObject() {
3 Object object = <initialization>
4 return object;
5 }
6 public static void main(String[] args) throws Exception {
7 Object obj = getObject();
8 FileOutputStream fOut = new FileOutputStream(args[0]);
9 ObjectOutputStream objOut = new ObjectOutputStream(fOut);
10 objOut.writeObject(obj);
11 FileInputStream fs = new FileInputStream(args[0]);
12 ObjectInputStream objIn = new ObjectInputStream(fs);
13 Object deserializedObj = objIn.readObject();
14 new File(filepath).delete();
15 }
16 }

Listing 4. Test Case template

the program’s execution. It captures every method that is invoked in the program and its caller
method.
Since we aim to investigate whether our taint-based call graph algorithm handle object dese-
rialization soundly or would unsound assumptions be able to find vulnerabilities, we compare
Seneca against Salsa [Santos et al. 2021, 2020], a state-of-the-art tool that computes call graphs
for object deserialization based on downcasts within the program, which yields to less sound call
graphs.
Metric: Similar to prior works [Ali et al. 2019; Ali and Lhoták 2012; Kummita et al. 2021; Li
et al. 2014; Smaragdakis et al. 2015], we verify our approach’s soundness based on the number
of edges in the runtime call graph that are missing in the static call graph. In our comparison,
we differentiate application-to-application edges, application-to-library, and library-to-library

edges. That means that we disregard missing edges due to: (a) class initializers (because <clinit>
methods are modeled by Wala using a synthetic method that invokes all class initializers at
once), (b) native code (because it cannot be statically analyzed), (c) explicitly excluded classes

(i.e., classes inside our list of exclusions file that are removed from the static call graph), and (d)
library-to-library edges (i.e., edges from a built-in Java class to another built-in language class).

Table 3. XCorpus programs [Dietrich et al. 2017b] used in our experiments and the number of Test Cases

(TCs) created for each

Project

batik

(1.7)

castor

(1.3.1)

james

(2.2.0)

jgraph

(5.13.0.0)

jpf

(1.5.1)

log4j

(1.2.16)

openjms

(0.7.7-beta-1)

pooka

(3.0-080505)

xalan

(2.7.1)

xerces

(2.10.0)

Classes 2,560 1,639 340 187 152 308 808 1,617 1,621 1,034
Classes in

Dependencies

1,209 947 274 0 1 0 28 0 0 0

Test Cases 25 65 5 30 5 15 5 30 25 5

4.3 Answering RQ2: Precision

Although soundness is a desirable property for static analysis, in practice, however, creating a
sound analysis also implies a loss of precision. Due to the undecidability of program verification, it
is impossible to create an analysis that is both sound and precise [Rice 1953]. Therefore, a sound
analysis is an over-approximation that may include spurious results (e.g., unrealistic paths).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

1:16 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

While our approach aims to enhance an existing call graph construction algorithm to handle
serialization-related callbacks soundly, we need to verify whether our approach introduces impre-
cision and to what extent. Imprecision in this work refers to adding nodes and edges that will not
arise at the program’s runtime during object serialization and deserialization [Ali et al. 2019]. In
other terms, the precision of a call graph means that it does not contain nodes and edges that will
not arise at runtime during object deserialization and serialization.
To answer this question, we use our JVMTI agent to compute the runtime call graph for each

program in the CATS test suite [Eichberg 2020] and our manually constructed Test Cases derived
from the XCorpus dataset [Dietrich et al. 2017b]. Subsequently, we compute the number of edges
in the static call graph that did not exist in the runtime call graph.
— Metric: We calculate the number of nodes and edges that appeared in Seneca’s call graph

but did not appear on the dynamic call graph. Similar to prior works [Smaragdakis et al. 2015;
Smaragdakis and Kastrinis 2018], when performing this calculation, we only consider application-
to-application edges and application-to-library edges as long as these edges do not include nodes
that are a class initializer, a native code method, or a method from an explicitly excluded class.

4.4 Answering RQ3: Performance

Our serialization-aware call graph construction approach introduces extra iterations on the under-
lying pointer analysis methods. As such, we investigate whether these extra iterations introduce
significant overhead that renders the analysis impractical for real large-scale programs.

To verify the overhead of incurred by our approach, we first use Seneca to build the call graphs
for the test cases created for the 10 programs extracted from the XCorpus dataset [Dietrich et al.
2017b]. Subsequently, we run the 0-1-CFA and 1-CFA call graph construction algorithms available
in Wala with and without our serialization-aware approach enabled. For comparison, we also
ran Salsa configured with 0-1-CFA and 1-CFA to build call graphs. For all of these approaches, we
used a standard list of class exclusions 7; these classes are ignored during call graph construction
by WALA, Salsa, and Seneca.
—Metric: Wemeasure (i) the running time to compute the call graphs when using our approach, and
(ii) the extra added number of iterations over the worklist of the call graph construction algorithm.
We run these analyses on a machine with a 2.9 GHz Intel Core i7 processor and 32 Gb of RAM
memory.

4.5 Answering RQ4: Efficiency

One of the premises of this work is that a taint-based call graph construction enable the computation
of sound call graphs with respect to (de)serialization, which can be useful for client analyses, such
as vulnerability detection. In this question, we aim to verify whether Seneca can help a static
analysis technique in finding potential vulnerable paths in the program.

To answer this question, we obtained 3 open-source projects with known disclosed deserialization
vulnerabilities. We selected these projects because their exploits have been widely discussed by
practitioners and are available on the YSoSerial GitHub repository [Frohoff 2018]. That is, these
projects have well-known “gadget chains” which were previously disclosed in vulnerability reports.
To answer this RQ, we used Seneca and Salsa to compute the call graphs of these projects

(configured to use 0-1-CFA and 1-CFA). Subsequently, we use these call graphs to extract vulnerable
paths which are paths from ObjectInputStream.readObject() to sinks, i.e., method invocations
to security-sensitive operations.

7https://github.com/wala/WALA/blob/master/com.ibm.wala.core/src/main/resources/Java60RegressionExclusions.txt

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

https://github.com/wala/WALA/blob/master/com.ibm.wala.core/src/main/resources/Java60RegressionExclusions.txt

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:17

To identify sinks, we manually curated a list of security-sensitive method signatures. To do so,
we extracted the list of sink methods from a prior published work [Thomé et al. 2017]. Moreover, we
parsed the manifest file from the Juliet Test Suite [Software 2023]. This test suite is a dataset from
NIST (National Institute of Standards and Technology) which has a collection of synthetic C/C++
and Java code samples with different software weaknesses (CWEs). Their manifest file indicates
all the files for a test case, the kind of weakness it contains, and its location in the code. Thus, we
parsed the manifest to extract the lines that are flagged as vulnerable, filtered out the lines that
are not method invocations, grouped them by signature, and manually identified the ones that
are sinks. After performing these two complementary curation steps, we obtained a total of 101
methods signatures for sinks.
— Metric: We measured how many vulnerable paths each approach was able to identify.

5 Results

5.1 RQ1: Call Graph Soundness

This section describes the results of the experiments for measuring the soundness of the call graphs
computed by Seneca.

5.1.1 Dataset #1: CATS Table 4 reports the programs in which each approach soundly inferred
the call graph (✓) and the ones it failed to do so (✗). As shown in this table, we built call graphs
using two different pointer analysis policies: 0-1-CFA, and 1-CFA. For the sake of comparison,
this table also includes the same algorithms and results presented by Reif et al. [Reif et al. 2019]
and that we were able to reproduce using the Docker image [Reif 2023] provided by their work.
The released artifacts of Reif et al. study [Reif et al. 2019] includes adapters for constructing call
graphs using Soot (CHA, RTA, VTA, and Spark), Wala (RTA, 0-CFA, 1-CFA, and 0-1-CFA), Doop
(context-insensitive), and Opal (RTA). We also included a comparison with a recent published
work, Salsa [Santos et al. 2021, 2020], configured with the same pointer analysis policies as ours,
i.e., 0-1-CFA, and 1-CFA.

Table 4. Results from running the test cases from CATS

Salsa

(0-1-CFA)

Salsa

(1-CFA)

Seneca

(0-1-CFA)

Seneca

(1-CFA)

Opal

(RTA)

Soot

(CHA)

Soot

(RTA)

Soot

(Spark)

Soot

(VTA)

Wala

(0-1-CFA)

Wala

(0-CFA)

Wala

(1-CFA)

Wala

(RTA)

Ser1 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ser2 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ser3 ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ser4 ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ser5 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ser6 ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ser7 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ser8 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Ser9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

As shown in Table 4, only our serialization-aware call graph construction (Seneca) and Salsa
passed all of the nine test cases. Only three other algorithms partially provided support for callback
methods, namely Soot𝑅𝑇𝐴 and Soot𝐶𝐻𝐴 (2 out of 9) and OPAL𝑅𝑇𝐴 (5 out of 9) [Reif et al. 2019]. The
remaining algorithms, i.e., Soot (VTA, and Spark), Wala (RTA, 0-CFA, 1-CFA, 0-1-CFA), and Doop
(context-insensitive), did not provide support at all for serialization-related callback methods.

It is also important to highlight that the frameworks that provided partial support for serialization-
related features (SootRTA, SootCHA, andOpalRTA) use imprecise call graph construction algorithms

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

1:18 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

(CHA [Dean et al. 1995] or RTA [Bacon and Sweeney 1996]). Table 5 shows a comparison of call
graphs’ sizes in terms of nodes and edges. As we can infer from these charts, the only call graph
construction algorithms used by Soot, and Opal that provided partial support for serialization
create much larger call graphs (in terms of the number of nodes and edges). Since these algorithms
only rely on static types when computing the possible targets of a method invocation, they introduce
spurious nodes and edges, thereby increasing the call graph’s size.

Table 5. Call Graph sizes for each approach

TC Approach # Nodes # Edges TC Approach # Nodes # Edges TC Approach # Nodes # Edges

Ser1

OPALRTA 5,983 39,580
Ser4

Salsa1-CFA 1,590 2,841
Ser7

Seneca0-1-CFA 722 1,323
Salsa0-1-CFA 771 1,527 Seneca0-1-CFA 722 1,323 Seneca1-CFA 1,590 2,841

Salsa1-CFA 1,876 3,538 Seneca1-CFA 1,590 2,841

Ser8

Salsa0-1-CFA 729 1,333

Seneca0-1-CFA 771 1,527

Ser5

OPALRTA 6,461 44,773 Salsa1-CFA 1,601 2,855
Seneca1-CFA 1,876 3,538 Salsa0-1-CFA 722 1,323 Seneca0-1-CFA 729 1,333

Ser2

OPALRTA 5,985 39,583 Salsa1-CFA 1,590 2,841 Seneca1-CFA 1,601 2,855
Salsa0-1-CFA 772 1,529 Seneca0-1-CFA 722 1,323 SootCHA 17,570 261,274
Salsa1-CFA 1,878 3,540 Seneca1-CFA 1,590 2,841 SootRTA 17,449 259,257

Seneca0-1-CFA 772 1,529

Ser6

Salsa0-1-CFA 546 940

Ser9

OPALRTA 6,463 44,775
Seneca1-CFA 1,878 3,540 Salsa1-CFA 1,068 1,718 Salsa0-1-CFA 724 1,325

Ser3

Salsa0-1-CFA 772 1,528 Seneca0-1-CFA 546 940 Salsa1-CFA 1,592 2,843
Salsa1-CFA 1,877 3,539 Seneca1-CFA 1,068 1,718 Seneca0-1-CFA 724 1,325

Seneca0-1-CFA 772 1,528
Ser7

OPALRTA 6,458 44,763 Seneca1-CFA 1,592 2,843
Seneca1-CFA 1,877 3,539 Salsa0-1-CFA 722 1,323 SootCHA 17,570 261,302

Ser4 Salsa0-1-CFA 722 1,323 Salsa1-CFA 1,590 2,841 SootRTA 17,449 259,286

Our approach enhances the underlying pointer analysis policy in order to strike a balance
between improving soundness while not greatly affecting the call graph’s precision by adding
spurious nodes and edges. A more recent work, Salsa, also produced call graphs with reasonable
sizes, very similar to ours. However, this is because the test cases in the CATS dataset are rather
simple; they are up to two classes that exercise one custom call back method at a time. As we will
discuss in the next subsection, Salsa’s ability to create sound call graphs is greatly diminished
when using the source code of real software projects.

5.1.2 Dataset #2: XCorpus Dataset Figure 7 depicts the percentage of edges in the runtime call
graph of the projects, that aremissing on the static call graph computed by each approach. From this
chart, we notice that Seneca outperformedWala and Salsa. Our approach has lessmissing edges
compared to other the approaches, i.e., it is able to soundly infer hidden paths through serialization
callbacks.
For the castor project, Seneca did not miss any runtime edge. In contrast, Wala and Salsa

(0-1-CFA and 1-CFA) missed 4.3% of the runtime edges. Seneca0-1-CFA also did not miss any runtime
edges for two other projects (james, and jpf), whereasWala0-1-CFA and Salsa0-1-CFA missed 8.7%
and 5.4% of edges, respectively. The biggest improvements in comparison to other approaches were
observed for the test cases created for the jgraph, openjms, log4j, and xalan projects. The percentage
difference between Seneca andWala as well as Salsa ranged from 5% to 23.4%.

When inspecting the edges that Seneca missed, we observed that these edges were unrelated to
serialization callbacks. That is, these were edges to which the underlying pointer analysis algorithm

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:19

2.
5% 4.
3% 9.
2%

54
.2
%

4.
1%

23
.5
%

62
.4
%

4.
3%

25
.4
%

5.
4%

2.
4% 4.
3% 8.
7%

54
.1
%

5.
4% 20
.0
%

62
.4
%

3.
8%

25
.4
%

5.
4%

0.
4%

0.
0%

0.
0%

39
.2
%

0.
0%

0.
5%

39
.0
%

1.
1% 10
.8
%

3.
6%

2.
5% 4.
3% 9.
2%

54
.2
%

4.
1%

23
.5
%

62
.4
%

4.
3%

25
.4
%

5.
4%

2.
5% 4.
3% 9.
2%

54
.2
%

5.
4% 23

.5
%

62
.4
%

4.
1%

25
.4
%

5.
4%

0.
8%

0.
0% 2.
3%

39
.4
%

0.
4% 18

.1
% 39
.0
%

2.
1% 10
.8
%

3.
6%

0%

50%

100%

batik castor james jgraph jpf log4j openjms pooka xalan xerces

PERCENTAGE OF MISSING EDGES IN THE STATIC CALL GRAPH WALA 0-1-CFA SALSA 0-1-CFA SENECA 0-1-CFA
WALA 1-CFA SALSA 1-CFA SENECA 1-CFA

Fig. 7. Percentage of missing edges in the static call graphs computed byWALA, Salsa, and Seneca

cannot soundly infer the points-to sets of variables. For example, we observed edges that were
missed because instructions were using reflection to invoke methods. These were constructs that
the underlying 0-1-CFA and 1-CFA pointer analysis provided byWala (our baseline framework)
could not correctly infer the dispatch.
One of the reasons as to why Salsa performed similar to Seneca with the CATS test suite but

performed poorly on the XCorpus dataset has to do with its inability to compute potential method
dispatches from classes in the classpath. As described in their work [Santos et al. 2021, 2020], the
approach relies on downcasts of objects to infer what are the object(s) being deserialized. When
downcasts are unavailable, the approach relies on a simple approach of computing all possible
dispatches, but limited to classes on the application scope. Our approach, on the other hand, follows
Java’s serialization specification and includes all classes in the classpath, irrespective of its scope
(i.e., extension, primordial, or application scope).

Summary of Findings for RQ1

– Our experiments showed that our approach improved a call graphs’ soundness with respect
to serialization-related features. It added nodes and edges in the call graph that could arise at
runtime during serialization and deserialization of objects.

– Our approach passed all test cases, whereas other approaches, namely SootRTA, SootRTA
passed only 2, and OPALRTA passed 5.

– The only call graph construction algorithms used by Soot, and Opal that provided partial

support for serialization used algorithms that only rely on the method’s signatures for dispatch
(i.e., CHA and RTA). Hence, they created much larger call graphs because they introduced
spurious nodes and edges.

– Although Salsa, a recently published work, also passed all the test cases in the CATS test
suite, it failed to soudnly infer the callbacks in real applications from the XCorpus dataset.

5.2 RQ2: Precision

This section describes the evaluation results of the precision of the call graphs computed by Seneca.

0

500

1000

1500

Se
r8

Se
r9

Se
r8

Se
r9

Se
r1

Se
r2

Se
r5

Se
r7

Se
r9

Se
r1

Se
r2

Se
r3

Se
r4

Se
r5

Se
r6

Se
r7

Se
r8

Se
r9

Se
r1

Se
r2

Se
r3

Se
r4

Se
r5

Se
r6

Se
r7

Se
r8

Se
r9

Se
r1

Se
r2

Se
r3

Se
r4

Se
r5

Se
r6

Se
r7

Se
r8

Se
r9

Se
r1

Se
r2

Se
r3

Se
r4

Se
r5

Se
r6

Se
r7

Se
r8

Se
r9

Soot
(CHA)

Soot
(RTA)

OPAL (RTA) Salsa (0-1-CFA) Salsa (1-CFA) Seneca (0-1-CFA) Seneca (1-CFA)

INCORRECT EDGES PER APPROACH

Fig. 8. Number of incorrect edges for the test cases from the CATS test suite.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

1:20 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

5.2.1 Dataset #1: CATS Figure 8 depicts the number of edges in the static call graph that were
not present in the runtime call graph for the test cases in the CATS test suite [Reif et al. 2019]. As
shown in this chart, Seneca was able to provide full support for serialization callbacks (passing all
test cases, see Table 4) while maintaining reasonably sized call graphs. Compared to Soot and OPAL,
the derived call graphs were far more imprecise. While Opal and Soot had over 800 imprecise
edges, Seneca had between 95 and 343 incorrect edges.

This comparison also shows that Salsa’s performance was similar to Seneca. As explained in the
previous section, however, this similar performance is caused by the fact that the programs in the
CATS test suite are small, which does not include scenarios where Salsa’s unsound assumptions
fall short.

3.
4%

0.
4%

0.
4% 2.
3%

0.
8%

20
.9
%

5.
2%

0.
6%

0.
4%

0.
5%4.
1%

0.
2%

0.
2% 2.
7%

0.
7%

24
.9
%

6.
2%

0.
5%

0.
2%

0.
2%8.
3%

27
.4
%

10
.5
%

17
.6
%

0.
7%

24
.3
%

12
.7
% 27
.4
%

10
.8
%

17
.4
%

1.
2%

0.
2%

0.
1%

0.
8%

0.
3% 6.
8%

1.
8%

0.
2%

0.
1%

0.
2%1.
6%

0.
1%

0.
1% 1.
3%

0.
3% 8.
9%

2.
6%

0.
2%

0.
1%

0.
1%3.
5% 15

.2
%

4.
5% 9.
3%

0.
3% 9.
4%

5.
4% 14
.3
%

4.
7% 7.
7%

0%

20%

40%

60%

80%

100%

batik castor james jgraph jpf log4j openjms pooka xalan xerces

PERCENTAGE OF INCORRECT EDGES IN THE STATIC CALL GRAPH
WALA 0-1-CFA SALSA 0-1-CFA SENECA 0-1-CFA
WALA 1-CFA SALSA 1-CFA SENECA 1-CFA

Fig. 9. Percentage of incorrect edges (i.e., edges in the runtime CG not in the static CG) for each approach

5.2.2 Dataset #2: XCorpus Dataset Figure 9 plots the percentage of edges that are in the runtime
call graph, but that are not in the static call graph of each approach. As observed on this chart,
unsurprisingly, increasing the soundness of the call graph also increased the number of imprecise
edges (i.e., edges that did not arise at runtime). The increase of missed edges is comparable to the
one by Salsa.

When we inspected the imprecise edges, we noticed that those were related to serialization nodes,
i.e., cases in which our call graph included all possible objects that can be serialized. Indeed, as our
test cases serialized only one object at a time, all these edges are deemed as incorrect. However, as
the Java API allows the deserialization of arbitrary types (i.e., any serializable type available on the
class path), the edges in Seneca could arise at runtime if an object being read uses one of the other
serializable classes (other than the one from the test case).

Summary of Findings for RQ2

– Our experiments showed that an increase in soudness included edges that are not in the
runtime call graph. However, although these edges did not arise at runtime, they still could
be possible (feasible) chains of method invocation since Java’s serialization API allows any
serializable class in the classpath to be read from an input stream.

5.3 RQ3: Performance

We measured the running time observed when computing the call graphs using Wala, Salsa,
and Seneca, configured with 0-1-CFA and 1-CFA pointer analysis policies. The results for these
experiments are shown in Figure 10. As we would expect, Seneca takes longer to compute call
graphs as it has to process nodes and edges related serialization.
The observed differences, however, do not hinder the overall scalability of the approach. The

approach still finishes within seconds of execution. Moreover, when further inspecting the worklist

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:21

of our algorithm, we noticed that Seneca incurs between 3–6 extra iterations overWala’s worklist.
These extra iterations along with the taint analysis are the root cause for the extra running time
needed for Seneca to finish.

0

1000

2000

3000

4000

5000

batik castor james jgraph jpf log4j openjms pooka xalan xerces

AVERAGE RUNNING TIME (MS) FOR EACH APPROACH
WALA 0-1-CFA SALSA 0-1-CFA SENECA 0-1-CFA
WALA 1-CFA SALSA 1-CFA SENECA 1-CFA

Fig. 10. The total running time (milliseconds) that it took each approach to compute a call graph.

Summary of Findings for RQ3

– Seneca’s performance, when evaluated against an established benchmark, has been found to
not induce great overhead on the underlying call graph construction approach. This makes
Seneca a viable option for developers and researchers in need of sound call graph for analyzing
programs that heavily use serialization constructs.

5.4 RQ4: Usefulness for Vulnerability Detection

We have implemented a client analyses that attempts to find vulnerable paths caused by untrusted
object deserialization in a program. We then verified how well this client analysis could detect
vulnerable paths by comparing its performance using the call graph computed by Salsa and the
one generated by Seneca. The results for this experiment are shown in Table 6.

Table 6. Number vulnerable paths found by a client analyses that used Salsa’s and Seneca’s call graphs

FileUpload Vaadin Wicket

SALSA SENECA SALSA SENECA SALSA SENECA

0-1-CFA 1-CFA 0-1-CFA 1-CFA 0-1-CFA 1-CFA 0-1-CFA 1-CFA 0-1-CFA 1-CFA 0-1-CFA 1-CFA

Vuln. Paths 0 0 14 12 0 0 4 0 0 0 20 34

As shown in this table, Salsa’s call graphs were not suitable for performing vulnerability
detection. The key issue lies on the unsoundness of Salsa. This approach relies on type casts
(downcasts) to infer what object is being deserialized from a stream. However, as explained in
Section 2.2.1, untrusted object deserialization vulnerabilities are caused by the ability of an attacker
to craft arbitrary objects using any serializable class available in the classpath. Thus, even if the
program performs a downcast over the serialized object, the exploit would have been executed
anyway, as the vulnerability arises during deserialization and not after it.

Unlike Salsa, our approach was able to find vulnerable paths within our allocated time budget (of
15minutes and up to 15 call graph nodes in a path). The identified paths included the vulnerable paths
from previously disclosed gadget chains, documented on the YSoSerial repository of deserialization
exploits [Frohoff 2018].

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

1:22 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

Summary of Findings for RQ4

– We showed the benefits of a sound call graph with respect to deserialization by implement a
client static analysis that detect vulnerable paths caused by unstruted object deserialization.
Our results showed that while Seneca is able to find previously disclosed vulnerable paths,
an existing approach (Salsa) falls short in generating call grapsh that can infer these hidden
vulnerable paths.

– The experiments highlight the importance of building call graphs that are sound with respect
to deserialization features and demonstrate that Seneca can be suitable for downstream
analyses that requires the handling of serialization constructs in a sound fashion.

6 Related Work

This section discusses relevant works related to object deserialization and call graph construction.

6.1 Call graph construction & Taming Challenging Programming Features

Call graphs are a core data structure for multiple analyses. Thus, previous works focused on
devising algorithms for their construction. Among these works, we have CHA [Dean et al. 1995]
and RTA [Bacon and Sweeney 1996], which are two well-known algorithms that over-approximates
possible call paths by relying onmethods’ signatures. Since these algorithms are overly conservative,
multiple works discussed frameworks to make them more precise [Grove and Chambers 2001;
Grove et al. 1997; Tip and Palsberg 2000]. Moreover, previous research also focused on creating
application-only call graphs, that disregard unnecessary library classes, while keeping on the graph
the nodes and edges that are important for the underlying analysis [Ali and Lhoták 2012]. In this
paper, we focused on solving the challenge of computing call graphs that are sound concerning
object serialization and deserialization.

Previous research on static analysis also explored the challenges involving supporting reflection
features [Bodden et al. 2011; Li et al. 2014, 2019; Smaragdakis et al. 2015], dynamic proxies [Four-
tounis et al. 2018], enterprise frameworks [Antoniadis et al. 2020] and RMI-based programs [Sharp
and Rountev 2006]. These approaches involve making assumptions when performing the analysis,
to create analyses that are not overly imprecise. Unlike these prior works, however, we focused on
object deserialization that has its own unique challenges, as described in Section 2.3.

6.2 Empirical Studies on Call graphs

Multiple characteristics of call graphs (e.g., precision, soundness, performance, and recall) have
been widely studied in the past [Ali et al. 2019; Kummita et al. 2021; Murphy et al. 1998; Sui et al.
2020]. Murphy et al. [Murphy et al. 1998] studied multiple call graph construction approaches for
C programs, finding discrepancies among the generated call graphs across different approaches.
Sui et al. [Sui et al. 2018] focused on the support for dynamic language features, aiming to create a
benchmark for dynamic features for Java.

There is a line of research that explored call graph’s soundness of Java (or JVM-like) programs [Ali
et al. 2019; Reif et al. 2019, 2018]. In particular, recent empirical studies [Reif et al. 2019, 2018]
show that although serialization-related features are widely used, they are not well-supported in
existing approaches. Thus, we built an approach to enhance existing points-to analysis to support
the construction of sound call graphs with respect to serialization-related features.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:23

6.3 Pointer Analysis

Many works explored the problem of performing pointer analysis of programs [Bastani et al. 2019;
Feng et al. 2015; Heintze and Tardieu 2001; Hind 2001; Kastrinis and Smaragdakis 2013; Lhoták and
Hendren 2006; Rountev et al. 2001; Smaragdakis and Kastrinis 2018]. These approaches focus on
computing over- or under-approximations to improve one or more aspects of the analysis, such as
its soundness, precision, performance, and scalability. Existing pointer analysis approaches make
the sets finite such that the problem can be algorithmically solvable. In this paper, however, we
focus on aiding points to analysis to soundly handle serialization-related features in a program,
which are currently not well-supported because it relies on reflection [Reif et al. 2018].

6.4 Detecting Untrusted Object Deserialization

More recently there were approaches published that aimed at detecting untrusted object deserial-
ization for PHP [Koutroumpouchos et al. 2019; Shahriar and Haddad 2016] and .NET [Shcherbakov
and Balliu 2021]. Shcherbakov and Balliu [Shcherbakov and Balliu 2021] described an approach to
semi-automatically detect and exploit object injection vulnerabilities .NET applications. It relies on
existing publicly available gadgets to perform the detection and exploitation. Koutroumpouchos et
al. described ObjectMap [Koutroumpouchos et al. 2019] which is tool that performs black-box
analysis of Web applications to pinpoint potential insecure deserialization vulnerabilities. It works
by inserting payloads into the parameters of HTTP GET/POST requests and then monitoring the
target web application for errors to infer whether the application is vulnerable or not.

Recent works [Cao et al. 2023; Haken 2018; Rasheed and Dietrich 2020] focused on deserialization
vulnerabilities in Java programs. Rasheed and Dietrich [Rasheed and Dietrich 2020] described a
hybrid approach that first performs a static analysis of a Java program to find potential call chains
that can lead to sinks, where reflective method calls are made. It then uses the results of the static
analysis to perform fuzzing in order to generate malicious objects.

Unlike these prior works, we aimed to create an approach that can create sound call graphs with
respect to serialization-related features. Our call graph is intended to be used by downstream client
analyses, including, but not limited to, vulnerability detection.

6.5 Studies on Serialization and Deserializations

In the past few years, there was a spike of vulnerabilities associated with deserialization of ob-
jects [Cifuentes et al. 2015]. Thus, existing works also studied vulnerabilities rooted at untrusted
deserialization vulnerabilities [Dietrich et al. 2017a; Peles and Hay 2015]. Pele et al. [Peles and Hay
2015] conducted an empirical investigation of deserialization of pointers that lead to vulnerabilities
in Android applications and SDKs. Dietrich et al. [Dietrich et al. 2017a] demonstrated how seemingly
innocuous objects trigger vulnerabilities when deserialized, leading to denial of service attacks. In
this paper, we describe an approach that could help client analyses focused on detecting instances
of untrusted object deserialization.

7 Conclusion

We presented an approach to support the static analysis of serialization-related features in Java
programs. It works under the assumption that only classes in the classpath are serialized/deserialized,
all of their instance fields are non-nulls and can be allocated with any type that is safe. By applying
these assumptions and relying on APImodeling, our approach adds synthetic nodes into a previously
computed call graph to improve its soundness with respect to serialization-related features.
We evaluated our approach with respect to its soundness (RQ1), precision (RQ2), performance

(RQ3), and usefulness for a downstream client analysis (RQ4). We used 9 programs from the CATS

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

1:24 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

Test Suite [Reif et al. 2018] and 10 projects from the XCorpus dataset [Dietrich et al. 2017b]. We
compared our approach soundness and precision against off-the-shelf construction algorithms
available on Soot [Vallée-Rai et al. 1999], Wala [IBM [n.d.]], OPAL [Eichberg and Hermann 2014]
and Doop [Bravenboer and Smaragdakis 2009].
In our experiments, we found that only the call graphs that used CHA or RTA could (partially)

infer the callback methods that could arise at runtime. Our approach, on the other hand, provided
support for all the callback methods in the serialization and deserialization . In an analysis by
comparing runtime call graphs with the statically build call graphs, our approach introduced
less spurious edges. Finally, by measuring the running times of our approach, compared with its
counterpart call graph construction algorithm (Salsa and Wala), we found that our approach did
not incur significant overhead.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant
No. CNS-1816845 and Grant No. CCF-1943300. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author and do not necessarily reflect the
views of the National Science Foundation.

References

2023. TensorFlow. https://www.tensorflow.org [Online; accessed 21. Oct. 2023].
Karim Ali, Xiaoni Lai, Zhaoyi Luo, Ondrej Lhotak, Julian Dolby, and Frank Tip. 2019. A Study of Call Graph Construction for

JVM-Hosted Languages. IEEE Transactions on Software Engineering (2019), 1–1. https://doi.org/10.1109/TSE.2019.2956925
Karim Ali and Ondřej Lhoták. 2012. Application-only call graph construction. In European Conference on Object-Oriented

Programming. Springer, 688–712.
Anastasios Antoniadis, Nikos Filippakis, Paddy Krishnan, Raghavendra Ramesh, Nicholas Allen, and Yannis Smaragdakis.

2020. Static analysis of Java enterprise applications: frameworks and caches, the elephants in the room.. In PLDI. 794–807.
Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware
Taint Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language

Design and Implementation (Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 259–269. https:
//doi.org/10.1145/2594291.2594299

David F Bacon and Peter F Sweeney. 1996. Fast static analysis of C++ virtual function calls. In Proceedings of the 11th ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and applications. 324–341. https://doi.org/10.
1145/236337.236371

Osbert Bastani, Rahul Sharma, Lazaro Clapp, Saswat Anand, and Alex Aiken. 2019. Eventually Sound Points-To Analysis
with Specifications. In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2019.11

Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011. Taming Reflection: Aiding Static Analysis
in the Presence of Reflection and Custom Class Loaders. In Proceedings of the 33rd International Conference on Software

Engineering (ICSE’11). ACM, New York, NY, USA, 241–250. https://doi.org/10.1145/1985793.1985827
Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specification of Sophisticated Points-to Analyses. In

Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications

(Orlando, Florida, USA) (OOPSLA ’09). Association for Computing Machinery, New York, NY, USA, 243–262. https:
//doi.org/10.1145/1640089.1640108

Sicong Cao, Biao He, Xiaobing Sun, Yu Ouyang, Chao Zhang, Xiaoxue Wu, Ting Su, Lili Bo, Bin Li, Chuanlei Ma, et al.
2023. ODDFUZZ: Discovering Java Deserialization Vulnerabilities via Structure-Aware Directed Greybox Fuzzing. arXiv
preprint arXiv:2304.04233 (2023).

Cristina Cifuentes, Andrew Gross, and Nathan Keynes. 2015. Understanding Caller-Sensitive Method Vulnerabilities:
A Class of Access Control Vulnerabilities in the Java Platform. In Proceedings of the 4th ACM SIGPLAN International

Workshop on State Of the Art in Program Analysis (Portland, OR, USA) (SOAP 2015). ACM, New York, NY, USA, 7–12.
https://doi.org/10.1145/2771284.2771286

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently Computing Static
Single Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (1991), 451–490.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

https://www.tensorflow.org
https://doi.org/10.1109/TSE.2019.2956925
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/236337.236371
https://doi.org/10.1145/236337.236371
https://doi.org/10.4230/LIPIcs.ECOOP.2019.11
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/2771284.2771286

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:25

https://doi.org/10.1145/115372.115320
Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-oriented programs using static class hierarchy

analysis. In European Conference on Object-Oriented Programming. Springer, 77–101. https://doi.org/10.1007/3-540-49538-
X_5

Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex Potanin. 2017a. Evil Pickles: DoS Attacks Based on Object-
Graph Engineering. In 31st European Conference on Object-Oriented Programming (ECOOP 2017), Vol. 74. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 10:1–10:32. https://doi.org/10.4230/LIPIcs.ECOOP.2017.10

Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. 2017b. XCorpus – An executable Corpus of Java Programs. Journal
of Object Technology 16, 4 (Aug. 2017), 1:1–24. https://doi.org/10.5381/jot.2017.16.4.a1

Julian Dolby, Mandana Vaziri, and Frank Tip. 2007. Finding bugs efficiently with a SAT solver. In Proceedings of the the 6th

joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on The foundations of

software engineering. 195–204.
Michael Eichberg. 2020. JCG - SerializableClasses. https://bitbucket.org/delors/jcg/src/master/jcg_testcases/src/main/

resources/Serialization.md. (Accessed on 06/01/2020).
Michael Eichberg and Ben Hermann. 2014. A Software Product Line for Static Analyses: The OPAL Framework. In Proceedings

of the 3rd ACM SIGPLAN International Workshop on the State of the Art in Java Program Analysis (Edinburgh, United
Kingdom) (SOAP ’14). Association for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/2614628.
2614630

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. 2014. TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring
on Smartphones. ACM Trans. Comput. Syst. 32, 2, Article 5 (June 2014), 29 pages. https://doi.org/10.1145/2619091

A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. 2013. Efficient construction of approximate call graphs
for JavaScript IDE services. In 2013 35th International Conference on Software Engineering (ICSE). 752–761. https:
//doi.org/10.1109/ICSE.2013.6606621

Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. 2015. Bottom-Up Context-Sensitive Pointer Analysis for Java. In
Programming Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South Korea, November 30 - December

2, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9458), Xinyu Feng and Sungwoo Park (Eds.). Springer, 465–484.
https://doi.org/10.1007/978-3-319-26529-2_25

George Fourtounis, George Kastrinis, and Yannis Smaragdakis. 2018. Static analysis of Java dynamic proxies. In Proceedings

of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis. 209–220.
Chris Frohoff. 2018. frohoff/ysoserial: A proof-of-concept tool for generating payloads that exploit unsafe Java object

deserialization. https://github.com/frohoff/ysoserial. (Accessed on 05/26/2018).
David Grove and Craig Chambers. 2001. A framework for call graph construction algorithms. ACM Transactions on

Programming Languages and Systems (TOPLAS) 23, 6 (2001), 685–746.
David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. 1997. Call graph construction in object-oriented languages.

In Proceedings of the 12th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications

(OOPSLA’97). ACM, New York, NY, USA, 108–124. https://doi.org/10.1145/263698.264352
Ian Haken. 2018. Automated Discovery of Deserialization Gadget Chains.
Nevin Heintze and Olivier Tardieu. 2001. Demand-driven pointer analysis. ACM SIGPLAN Notices 36, 5 (2001), 24–34.

https://doi.org/10.1145/381694.378802
Michael Hind. 2001. Pointer analysis: Haven’t we solved this problem yet?. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools and engineering. 54–61. https://doi.org/10.1145/379605.379665
Stephen Hines, Prasad Kulkarni, David Whalley, and Jack Davidson. 2005. Using De-Optimization to Re-Optimize Code

(EMSOFT ’05). Association for Computing Machinery, New York, NY, USA, 114–123. https://doi.org/10.1145/1086228.
1086251

IBM. [n.d.]. T.J. Watson Libraries for Analysis (WALA). http://wala.sourceforge.net/wiki/index.php/Main_Page. (Accessed
on 06/05/2020).

N. Jovanovic, C. Kruegel, and E. Kirda. 2006. Pixy: a static analysis tool for detecting Web application vulnerabilities. In 2006

IEEE Symposium on Security and Privacy (S P’06). 6 pp. – 263. https://doi.org/10.1109/SP.2006.29
George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for points-to analysis. ACM SIGPLAN Notices 48,

6 (2013), 423–434. https://doi.org/10.1145/2499370.2462191
R. Khatchadourian, Y. Tang, M. Bagherzadeh, and S. Ahmed. 2019. Safe Automated Refactoring for Intelligent Parallelization

of Java 8 Streams. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). 619–630. https:
//doi.org/10.1109/ICSE.2019.00072

Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni Veroni, Christoforos Ntantogian, and Christos Xenakis. 2019. Ob-
jectMap: detecting insecure object deserialization. In Proceedings of the 23rd Pan-Hellenic Conference on Informatics.
67–72.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

https://doi.org/10.1145/115372.115320
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.4230/LIPIcs.ECOOP.2017.10
https://doi.org/10.5381/jot.2017.16.4.a1
https://bitbucket.org/delors/jcg/src/master/jcg_testcases/src/main/resources/Serialization.md
https://bitbucket.org/delors/jcg/src/master/jcg_testcases/src/main/resources/Serialization.md
https://doi.org/10.1145/2614628.2614630
https://doi.org/10.1145/2614628.2614630
https://doi.org/10.1145/2619091
https://doi.org/10.1109/ICSE.2013.6606621
https://doi.org/10.1109/ICSE.2013.6606621
https://doi.org/10.1007/978-3-319-26529-2_25
https://github.com/frohoff/ysoserial
https://doi.org/10.1145/263698.264352
https://doi.org/10.1145/381694.378802
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/1086228.1086251
https://doi.org/10.1145/1086228.1086251
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1145/2499370.2462191
https://doi.org/10.1109/ICSE.2019.00072
https://doi.org/10.1109/ICSE.2019.00072

1:26 Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri

Sriteja Kummita, Goran Piskachev, Johannes Späth, and Eric Bodden. 2021. Qualitative and Quantitative Analysis of
Callgraph Algorithms for Python. In 2021 International Conference on Code Quality (ICCQ). IEEE, 1–15. https://doi.org/
10.1109/ICCQ51190.2021.9392986

Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges for Static Analysis of Java Reflection: Literature
Review and Empirical Study. In Proceedings of the 39th International Conference on Software Engineering (Buenos Aires,
Argentina) (ICSE’17). IEEE, New York, NY, USA, 507–518. https://doi.org/10.1109/ICSE.2017.53

Ondřej Lhoták and Laurie Hendren. 2006. Context-sensitive points-to analysis: is it worth it?. In International Conference on

Compiler Construction. Springer, 47–64. https://doi.org/10.1007/11688839_5
Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-Inferencing Reflection Resolution for Java. In Proceedings of the 28th

European Conference on ECOOP 2014 — Object-Oriented Programming - Volume 8586. Springer-Verlag, Berlin, Heidelberg,
27–53. https://doi.org/10.1007/978-3-662-44202-9_2

Yue Li, Tian Tan, and Jingling Xue. 2019. Understanding and analyzing Java reflection. ACM Transactions on Software

Engineering and Methodology (TOSEM) 28, 2 (2019), 1–50. https://doi.org/10.1145/3295739
Liu Ping, Su Jin, and Yang Xinfeng. 2011. Research on software security vulnerability detection technology. In Proceedings

of 2011 International Conference on Computer Science and Network Technology, Vol. 3. 1873–1876. https://doi.org/10.1109/
ICCSNT.2011.6182335

Alvaro Muñoz and Christian Schneider. 2018. Serial killer: Silently pwning your Java endpoints. http://www.slideshare.net/
cschneider4711/owasp-benelux-day-2016-serial-killer-silently-pwning-your-java-endpoints. (Accessed on 11/15/2019).

Gail C Murphy, David Notkin, William G Griswold, and Erica S Lan. 1998. An empirical study of static call graph extractors.
ACM Transactions on Software Engineering and Methodology (TOSEM) 7, 2 (1998), 158–191.

Oracle. 2010. Java Object Serialization Specification - version 6.0. https://docs.oracle.com/javase/8/docs/platform/
serialization/spec/serialTOC.html. (Accessed on 04/07/2020).

Or Peles and Roee Hay. 2015. One Class to Rule Them All: 0-Day Deserialization Vulnerabilities in Android. In 9th USENIX

Workshop on Offensive Technologies (WOOT 15). USENIX Association, Washington, D.C., 12.
Shawn Rasheed and Jens Dietrich. 2020. A hybrid analysis to detect Java serialisation vulnerabilities. In Proceedings of the

35th IEEE/ACM International Conference on Automated Software Engineering. 1209–1213.
Michael Reif. 2023. mreif/jcg - Docker Image | Docker Hub. https://hub.docker.com/r/mreif/jcg [Online; accessed 20. Oct.

2023].
Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira Mezini. 2019. Judge: Identifying, Understanding,

and Evaluating Sources of Unsoundness in Call Graphs. In Proceedings of the 28th ACM SIGSOFT International Symposium

on Software Testing and Analysis (Beijing, China) (ISSTA 2019). ACM, New York, NY, USA, 251–261. https://doi.org/10.
1145/3293882.3330555

Michael Reif, Florian Kübler, Michael Eichberg, and Mira Mezini. 2018. Systematic Evaluation of the Unsoundness of Call
Graph Construction Algorithms for Java. In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops (ISSTA’18).
ACM, New York, NY, USA, 107–112. https://doi.org/10.1145/3236454.3236503

Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc. 74, 2
(1953), 358–366.

Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1988. Global value numbers and redundant computations. In
Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 12–27.

Atanas Rountev, Ana Milanova, and Barbara G Ryder. 2001. Points-to analysis for Java using annotated constraints. ACM
SIGPLAN Notices 36, 11 (2001), 43–55. https://doi.org/10.1145/504311.504286

Joanna C. S. Santos, Reese A. Jones, Chinomso Ashiogwu, and Mehdi Mirakhorli. 2021. Serialization-Aware Call Graph
Construction. In Proceedings of the 10th ACM SIGPLAN International Workshop on the State of the Art in Program Analysis.

Joanna C. S. Santos, Reese A. Jones, andMehdi Mirakhorli. 2020. Salsa: Static Analysis of Serialization Features. In Proceedings
of the 22th ACM SIGPLAN International Workshop on Formal Techniques for Java-Like Programs (FTfJP ’20) (Virtual)
(FTfJP 2020). ACM, New York, NY, USA, 18–25. https://doi.org/10.1145/3427761.3428343

Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon. 2023. An in-depth study of java deserialization remote-code
execution exploits and vulnerabilities. ACM Transactions on Software Engineering and Methodology 32, 1 (2023), 1–45.

Christian Schneider and Alvaro Muñoz. 2016. Java Deserialization Attacks. https://owasp.org/www-pdf-archive/GOD16-
Deserialization.pdf. (Accessed on 11/15/2019).

Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might have been afraid to ask). In 2010 IEEE symposium on Security and

privacy. IEEE, 317–331.
Hossain Shahriar and Hisham Haddad. 2016. Object injection vulnerability discovery based on latent semantic indexing. In

Proceedings of the 31st Annual ACM Symposium on Applied Computing. 801–807.
M. Sharp and A. Rountev. 2006. Static Analysis of Object References in RMI-Based Java Software. IEEE Transactions on

Software Engineering 32, 9 (2006), 664–681. https://doi.org/10.1109/TSE.2006.93

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

https://doi.org/10.1109/ICCQ51190.2021.9392986
https://doi.org/10.1109/ICCQ51190.2021.9392986
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1007/11688839_5
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1145/3295739
https://doi.org/10.1109/ICCSNT.2011.6182335
https://doi.org/10.1109/ICCSNT.2011.6182335
http://www.slideshare.net/cschneider4711/owasp-benelux-day-2016-serial-killer-silently-pwning-your-java-endpoints
http://www.slideshare.net/cschneider4711/owasp-benelux-day-2016-serial-killer-silently-pwning-your-java-endpoints
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://hub.docker.com/r/mreif/jcg
https://doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/3236454.3236503
https://doi.org/10.1145/504311.504286
https://doi.org/10.1145/3427761.3428343
https://owasp.org/www-pdf-archive/GOD16-Deserialization.pdf
https://owasp.org/www-pdf-archive/GOD16-Deserialization.pdf
https://doi.org/10.1109/TSE.2006.93

Seneca: Taint-Based Call Graph Construction for Java Object Deserialization 1:27

Mikhail Shcherbakov and Musard Balliu. 2021. Serialdetector: Principled and practical exploration of object injection
vulnerabilities for the web. In Network and Distributed Systems Security (NDSS) Symposium 202121-24 February 2021.

Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. 2015. More Sound Static Handling of
Java Reflection. In Programming Languages and Systems, Xinyu Feng and Sungwoo Park (Eds.). Springer International
Publishing, Cham, 485–503. https://doi.org/10.1007/978-3-319-26529-2_26

Yannis Smaragdakis and George Kastrinis. 2018. Defensive Points-To Analysis: Effective Soundness via Laziness. In 32nd

European Conference on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23

NSA Center for Assured Software. 2023. Juliet Java 1.3. https://samate.nist.gov/SARD/test-suites/111 [Online; accessed 1.
May. 2022].

Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, and Ryan Berg. 2011. F4F: Taint Analysis
of Framework-Based Web Applications. In Proceedings of the 2011 ACM International Conference on Object Oriented

Programming Systems Languages and Applications (Portland, Oregon, USA) (OOPSLA ’11). ACM, New York, NY, USA,
1053–1068. https://doi.org/10.1145/2048066.2048145

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. 2013. Alias Analysis for Object-Oriented
Programs. Springer Berlin Heidelberg, Berlin, Heidelberg, 196–232. https://doi.org/10.1007/978-3-642-36946-9_8

Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and Amjed Tahir. 2018. On the soundness of call graph construction
in the presence of dynamic language features-a benchmark and tool evaluation. In Asian Symposium on Programming

Languages and Systems. Springer, 69–88.
Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. 2020. On the Recall of Static Call Graph Construction in Practice.

https://doi.org/10.1145/3377811.3380441
H. Thaller, L. Linsbauer, A. Egyed, and S. Fischer. 2020. Towards Fault Localization via Probabilistic Software Modeling.

In 2020 IEEE Workshop on Validation, Analysis and Evolution of Software Tests (VST). 24–27. https://doi.org/10.1109/
VST50071.2020.9051635

Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel C Briand. 2017. Joanaudit: A tool for auditing common
injection vulnerabilities. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. 1004–1008.

Frank Tip and Jens Palsberg. 2000. Scalable propagation-based call graph construction algorithms. In Proceedings of the 15th

ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications. 281–293.
Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot - a Java Bytecode

Optimization Framework. In Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative Research
(Mississauga, Ontario, Canada) (CASCON ’99). IBM Press, 13.

MarvinWyrich and Justus Bogner. 2019. Towards an Autonomous Bot for Automatic Source Code Refactoring. In Proceedings
of the 1st International Workshop on Bots in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE Press,
24–28. https://doi.org/10.1109/BotSE.2019.00015

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2024.

https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://samate.nist.gov/SARD/test-suites/111
https://doi.org/10.1145/2048066.2048145
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1109/VST50071.2020.9051635
https://doi.org/10.1109/VST50071.2020.9051635
https://doi.org/10.1109/BotSE.2019.00015

	Abstract
	1 Introduction
	2 Background
	2.1 Java Serialization API
	2.2 Demonstrative Example
	2.3 Challenges for Call Graph Construction

	3 Seneca: Taint-Based Call Graph Construction for Object Deserialization
	3.1 Phase 1: Initial Call Graph Construction
	3.2 Phase 2: Call Graph Refinement

	4 Evaluation
	4.1 Research Questions
	4.2 Answering RQ1: Soundness
	4.3 Answering RQ2: Precision
	4.4 Answering RQ3: Performance
	4.5 Answering RQ4: Efficiency

	5 Results
	5.1 RQ1: Call Graph Soundness
	5.2 RQ2: Precision
	5.3 RQ3: Performance
	5.4 RQ4: Usefulness for Vulnerability Detection

	6 Related Work
	6.1 Call graph construction & Taming Challenging Programming Features
	6.2 Empirical Studies on Call graphs
	6.3 Pointer Analysis
	6.4 Detecting Untrusted Object Deserialization
	6.5 Studies on Serialization and Deserializations

	7 Conclusion
	Acknowledgments
	References

