Quantum-Based SMT Solving for String Theory

Beatrice Casey
bcasey6@nd.edu
University of Notre Dame
Notre Dame, IN, USA

ABSTRACT

Satisfiability Modulo Theory (SMT) solvers are a useful tool that
can be applied to a variety of problems, such as configuring re-
lationships in distributed systems, detecting race conditions, and
program analysis. String constraints are particularly difficult for
SMT solvers to navigate, as the search space is generally large.
Often times, classical SMT solvers will have to quit generating a
solution for string constraints because it takes too long to find the
solution. Quantum computing offers the advantages of quantum
mechanics (e.g., superposition), which allows a system to explore
a large search space much more efficiently. In this work, we ex-
plore creating a quantum-enabled SMT solver for string theory
by using quantum annealing and Quadratic Unconstrained Binary
Optimization (QUBO). Our preliminary results demonstrate that
it is feasible to transform these string constraints to QUBO, and
generate solutions for given constraints.

CCS CONCEPTS

» Hardware — Quantum computation; » Theory of computa-
tion — Quantum computation theory; Logic and verification;
« Mathematics of computing — Combinatorial optimization; «
Software and its engineering — Formal software verification;
« Computing methodologies — Symbolic and algebraic algo-
rithms.

KEYWORDS

Quantum Computing, Quantum Annealing, SMT Solving, QUBO

ACM Reference Format:

Beatrice Casey, Joanna C. S. Santos, and Andrew Hennessee. 2025. Quantum-
Based SMT Solving for String Theory. In Proceedings of July 20-23, 2025
(HPDC’25). ACM, New York, NY, USA, 8 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION

Satisfiability Modulo Theory (SMT) is a decision problem con-
cerned with determining whether a logical formula is satisfiable;
that is, whether there exists an assignment to its variables that
makes the formula true [1]. SMT generalizes the Boolean Satisfia-
bility (SAT) problem by including constraints from various back-
ground theories such as arithmetic, fixed-size bit-vectors, arrays,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPDC’25, South Bend, IN,

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-Xxxx-X/YY/MM

https://doi.org/XXXXXXX.XXXXXXX

Joanna C. S. Santos
joannacss@nd.edu
University of Notre Dame
Notre Dame, IN, USA

Andrew Hennessee
ahenne3@nd.edu
University of Notre Dame
Notre Dame, IN, USA

uninterpreted functions, and strings [2]. Instead of just determining
if a boolean formula has a satisfying assignment, an SMT solver
checks if a formula involving variables of different sorts (e.g., types
such as integers, bit vectors, etc) and constraints from these theories
has an assignment that satisfies both the boolean structure of the
formula and the rules of the incorporated theories [3].

SMT is used in a variety of applications, such as symbolic execu-
tion [4], program verification [5], and problem partitioning [6, 7].
Consequently, the reliability of these applications depends heavily
on the correctness of the answers provided by the solver [3, 8]. Fun-
damentally, SMT solving transforms a problem from one theory
space into a boolean problem, and a SAT solver, which is responsible
for the boolean structure and search, aims to find a solution to the
formula. Once a potential solution is found, it is transformed back
to the original theory, and checked for consistency (i.e., checking
whether the found solution actually satisfies the constraint). If the
solver did not find a solution, it will go through the previous steps
again until it finds an appropriate solution [9]. Herein lies one of
the major struggles of SMT solving: as a search space becomes
larger and larger, the complexity of finding a solution to a given
formula also grows.

Within the landscape of SMT, the theory of strings introduces a
unique set of challenges. String constraints are ubiquitous in soft-
ware, particularly in applications dealing with input validation, and
pattern matching [10, 11]. The SMT-LIB standard provides a speci-
fication for string operations, including deterministic semantics for
operations such as replace, index0f, concat, substr, and length
[12]. Reasoning about these operations often needs the integration
of linear integer arithmetic, further complicating the solving pro-
cess [10, 11, 13]. Notably, the quantifier-free first-order string theory
with regex constraints, string length arithmetic, and concatenation
is undecidable. Even for decidable fragments, the computational
complexity can be substantial, leading to performance bottlenecks
and scalability issues in classical SMT solvers [10, 11, 13, 14].

Existing classical string solvers often rely on techniques such as
automata-based methods and reductions to word equations. How-
ever, automata-based techniques can suffer from the high compu-
tational cost of operations like automata intersection, and reduc-
tions to word equations can lead to complex search spaces [13-16].
Empirical evaluations of state-of-the-art string solvers, such as
Z3-seq [17], Z3str3 [18], and CVC4 [19], have shown instances
of soundness bugs, completeness issues, and significant perfor-
mance variability, including timeouts and non-deterministic behav-
ior [8, 10]. This highlights the ongoing need for novel and more
efficient approaches to tackle the challenges of SMT solving for
strings.

Quantum Computing promises exciting opportunities across a
variety of disciplines such as healthcare [20, 21], finance [22], and
security [23-25]. Broadly, quantum computing is useful for solving

https://orcid.org/0009-0001-0097-2120
https://orcid.org/0000-0001-8743-2516
https://orcid.org/0009-0002-2189-7497
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

HPDC’25, South Bend, IN,

problems that are intractable or inefficient to solve using classical
techniques, i.e., classically hard problems. By leveraging principles
of quantum mechanics, such as entanglement and superposition,
quantum computers can offer speedups for certain problems com-
pared to the best classical algorithms [26, 27].

In this work, we present a preliminary approach for a quantum-
based SMT solver for string constraints using Quadratic Uncon-
strained Binary Optimization (QUBO) and quantum annealing. To
do so, we first convert string operations into an optimization prob-
lem using QUBO form. We then pass our QUBO formulations into
a quantum annealer [28], and parse the output. Our method cur-
rently supports the following string operations: string equality,
substring matching, substring indexOf, string length, string replace
and replace all, string reversal, string concatenation, string includes,
palindrome generation, and regex matching.

The rest of the paper is organized as follows: Section 2 gives the
necessary background of concepts to understand the work, Section
3 shares the related works, Section 4 describes the methodology for
our solver, Section 5 shares the results of the work, and Section 6
concludes the work.

2 BACKGROUND

This section defines concepts and terminology that are key to un-
derstanding this work.

2.1 SMT Solvers

An SMT solver is a tool which decides the satisfiability of formulas
within certain background theories, e.g., integer arithmetic, arrays,
etc [1]. An SMT solver can be considered as a generalization of
the Boolean Satisfiability (SAT) problem. While SAT deals with
the satisfiability of propositional formulas (i.e., formulas created
using boolean variables and logical connectives), SMT extends this
by incorporating reasoning about other mathematical and logical
theories [3]. For example, an SMT solver could be used to check
that the formula x + y > 10 A x < 4 is satisfiable and that possible
integer values for x and y that satisfies it are 3 and 8, respectively.
The architecture of modern SMT solvers is often based on the
DPLL(T) framework [29, 30]. This framework combines the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm that is used in SAT
solvers with a specific theory solver (T-solvers) for all of the back-
ground theories being considered [3, 31]. The SAT solver manages
the boolean structure of the formula by performing case splits and
propagating truth assignments. The T-solvers are responsible for
reasoning about the constraints which belong to the specific theo-
ries. They check whether the current boolean assignments provided
by the SAT solver actually satisfy the theory constraints [3, 31].

2.1.1 SMT-Lib Format. The SMT-Lib format was introduced as
a common format for all SMT problems in an effort to produce
an online library of benchmarks for SMT solvers [12]. The main
goal of the SMT-Lib initiative is to facilitate the evaluation and the
comparison of SMT solvers and advance the state of the art in the
field, similar to how the TPTP library has done for theorem proving
and the SATLIB library for propositional satisfiability [12, 32].

In this context, a “benchmark” refers to a logical formula that is to
be checked for satisfiability for a combination of background theories.
Examples of such background theories include real and integer

Casey et al.

arithmetic, as well as theories of data structures like lists, arrays,
and bit vectors [12]. The SMT-Lib format adopts an underlying
logic, defines a number of background theories, and specifies a
general syntax for various benchmarks, providing a way to indicate
which class of formulas a particular benchmark belongs to [12, 32].

To illustrate the syntax for formulas in the SMT-lib format, con-
sider the following example of a logic equation for linear integer
arithmetic [32]:

(x1+x2>0) A(x1+x2<3)A(x1=3%x3) A (x2=06%x4)
In SMT-Lib format, this formula is expressed as follows:

(and (> (+ x1 x2) @)
(< (+ x1 x2) 3)
(= x1 (* 3 x3))
(= x2 (* 6 x4)))

As shown above, the SMT-LIB format uses a LISP-like prefix no-
tation, where each operator precedes its operands. Logical conjunc-
tions (e.g., and) group together multiple constraints, and arithmetic
operations like addition are written in prefix form (e.g., (+ x1 x2)
instead of x1 + x2). This structured syntax allows SMT solvers to
parse and reason about constraints efficiently.

2.1.2 SMT Solving Applications and Challenges. SMT solving has a
variety of applications, particularly in distributed computing. For
example, prior works [33] have used SMT solving to synthesize
distributed systems as a solution to the exponential blowup in num-
ber of states that occurs when distributed systems are synthesized
through automata transformations. Additionally, SMT solving has
been used to monitor partially synchronous distributed systems in
an effort to detect bugs caused by concurrency and race conditions
among processes [34]. Given that the search space in distributed
systems is incredibly large [35], SMT solvers can struggle to find
solutions to the constraints presented to them. Thus, there is a need
to have a more efficient method of solving these constraints.

Furthermore, although the DPLL(T) framework provides a theo-
retical foundation, the performance of SMT solvers rely heavily on
various heuristics used within the SAT solver and theory solvers.
In addition, formula pre-processing is another crucial component
which is also often driven by heuristics [31].

2.2 Quantum Computing

Quantum Computing (QC) is a computing method that leverages
the principles of quantum mechanics, such as entanglement and
superposition. Unlike a classical bit, which can be either @ or 1, a
qubit (quantum bit) can exist in a superposition of both 0 and 1
simultaneously, represented as a combination of both states with
certain probabilities. Moreover, two or more qubits can be entangled,
i.e., their states become correlated such that the state of one instantly
affects the state of the other, regardless of distance. Entanglement
allows quantum computers to represent and process exponentially
more states than classical ones with the same number of bits [36].

Quantum computers show the most promise in four broad prob-
lem categories: combinatorial optimization, problems based in lin-
ear algebra, problems involving differential equations, and factor-
ization. These problem types underlie many potential quantum
applications under exploration by industry, including drug discov-
ery, logistics, cryptography, and machine learning. As such, they

Quantum-Based SMT Solving for String Theory

represent areas where quantum computing may offer competitive
advantages over classical approaches [36].

2.3 QUBO

Quadratic Unconstrained Binary Optimization (QUBO) is a
versatile combinatorial optimization model with a wide range of
applications [37]. Combinatorial optimization defines finding one
or more optimal solutions to a problem. The solutions for these
problems are searched for in a very large configuration space, with
the set of possible solutions being defined with certain constraints.
The goal is to optimize the objective function with the best solution.

QUBO problems are made up of three major components: binary
variables, an objective function, and penalty functions. The binary
variables represent decision points in the optimization problem.
The objective function is the function that is designed to be mini-
mized. The solution of the function will result in the lowest energy
for the system, thus returning the most optimal solution for the set
of variables provided. Penalty functions are an optional addition,
which will guide the solution to the most optimal state by adding
energy to the system when certain constraints are violated (e.g.,
when the solution is not optimal) [37].

QUBO allows for flexibility in the way that problems are defined.
It can be used for a variety of applications, such as scheduling,
traffic management, supply chain optimization, optimizing public
transportation schedules/routes, and even the map-coloring prob-
lem [36, 38, 39]. QUBO problems are particularly suited for quantum
annealing due to its cost function being equivalent to an Ising model.
This makes it such that its global optimum can be approximated by
quantum annealing [38].

3 RELATED WORKS

Applications of quantum computing, particularly to the domain of
software engineering, is still largely in its infancy. However, there
have been multiple works which have begun exploring the use of
quantum computing across a wide range of software engineering
related tasks, as well as software engineering techniques applied to
quantum computing.

3.1 Quantum Software Engineering

Existing research has looked into Quantum Software Engineering,
working towards having usable and trustworthy quantum programs.
Quantum Software Testing (QST) is a crucial area, with numerous
approaches being explored to ensure the reliability of quantum
programs. These include: statistical testing [40], assertion-based
testing [40, 41], and mutation testing [42]. Statistical testing relies
on sampling to verify program outputs. Existing sample methods
can be costly in terms of measurements. Kang et al. use techniques
such as quantum amplitude amplification to improve the testing
of these programs. [40]. Assertion-based testing ensures that con-
ditions are validated during execution [40], and mutation testing
assesses the effectiveness of a test suite by introducing faults [42].
Other techniques, like metamorphic testing, property-based testing,
coverage-guided test generation, search-based testing, and differ-
ential testing are also being investigated as possible methods for
QST. [41, 42]. Another area in quantum software engineering is the
mitigation of noise. Noise is an issue for quantum computers, which

HPDC’25, South Bend, IN,

can greatly impact their reliability and effectiveness. Mugqeet et al.
investigate mitigation techniques for noise in quantum computing,
as well as the challenges posed by this noise [42].

Further, the development of quantum programming languages
and compilation tools has also been explored. In this context, Scaf-
fCC is a notable compiler aiming for efficient compilation and
analysis of quantum programs, focusing on modularity and re-
source analysis [43]. Javadi-Abhari et al. also consider the evolution
of QASM as a potential quantum assembly language [43]. Finally,
Jeon et al. have extended Probabilistic Model Checking (PMC) to
the quantum domain by developing Quantum Probabilistic Model
Checking (QPMC) using Quantum Amplitude Estimation to address
the limitations of classical PMCs due to state explosion [44].

3.2 Quantum Algorithms

Recent works have investigated use and development of quantum
algorithms in various applications. Lin et al. [9] create a quantum
SMT solver for bit vector theory. Unlike our work, Lin et al. focus on
bit-vector theory. Additionally, Lin et al. focus on quantum circuit ex-
ecution and require universal quantum computers as their approach,
whereas our work takes an optimization-focused and annealing-
compatible approach, with a focus on complex string constraints.
Another application of quantum algorithms is to the fundamental
problem of string matching. Cantone et al. [45] provided a detailed
analysis and extension of a quantum string matching algorithm
by Niroula-Nam [46], including approximate matching with swaps.
Faro et al. [47] explored a method to translate classical bit-parallel
string matching techniques into quantum algorithms, achieving a
quadratic speedup via Grover’s search. Marino et al. [48] presented
the first practical implementation of a quantum string matching
circuit using Qiskit for binary strings. Furthermore, Faro et al. [49]
introduced the quantum path parallelism (QPP) approach, a general
strategy to adapt quantum computation to various nonstandard
text searching problems by using automata-based string recogni-
tion. While all these works relate to string matching, our work
focuses on a generalized approach to a variety of string operations.
Additionally, these works use circuit-based methods in their ap-
proach, while we use quantum annealing and QUBO for our string
operations.

The Quantum Approximate Optimization Algorithm (QAOA) is
an area of research under quantum algorithms and applications.
Studies focus on the ansatz design, parameter optimization, effi-
ciency, and hardware implementations of QAOA [50, 51]. Grover’s
algorithm is another fundamental algorithm with applications in
areas like quantum SMT solving [9, 52].

4 A QUANTUM APPROACH TO SMT SOLVING

In this paper, we describe an approach that leverages the power
of quantum computing to better scale SMT solvers. Specifically,
we focus on solving string constraints by formulating the SMT
solving problem in QUBO form to be solved by a quantum annealear.
As shown in Figure 1, our approach takes as input the operation
performed (e.g., string concatenation, etc), and a list of any other
required arguments, such as the length of the output string in
generation cases, substrings to include for substring matching or
substring index of, characters to replace for string replace and

HPDC’25, South Bend, IN,

replaceAll, strings to concatenate for string concatenation, strings
to reverse for string reversal, a regex pattern for regex matching,
or two strings for string includes.

Subsequently, our approach generates out binary variables, which
are the binary representations of our strings, and encode our objec-
tive function into a QUBO matrix. For some operations, we include
penalty functions to further ensure that the annealer finds the op-
timal solution, and this penalty function is also encoded in the
matrix. We pass this QUBO matrix to a quantum (or simulated)
annealer, and we finally decode the output of the annealer to a
string by transforming the binary strings to ASCII numbers, and
then to their corresponding characters.

« String TR
operation QuUBO 10 ; oo Q
o Operation —>| Formulation ™ Binary g:ﬁ?::;‘erlmyn_) io0d aue®

' QO

QUBO Matrix Quantum Decode
Annealer Solution

Figure 1: Overview of our approach.

The process for converting any problem to QUBO form follows
the same conventions: first, we must define the binary variables.
Next, the objective function must be defined. In other words, we
need to define what exactly it is that we are trying to minimize
by using our binary variables. Then, we need to define how the
QUBO matrix will be formed. In our case, the formulations differ
slightly for each code constraint our method covers. The details of
the methods are described in the next subsections (§ 4.1-§ 4.12).

Unless otherwise specified, our binary variables remains the
same throughout our formulations: each ASCII character in the
target string is represented by 7 bits, resulting in 7n binary variables
for a string of length n (7 bits per character in n). Each variable x;
represents one bit position in the final string, with the complete
set of variables representing the entire target string in binary form.
Formally, we define a function bin : ¥ — {0, 1}7, which maps each
character from the alphabet ¥ to a seven-bit binary vector. Further,
we define a function f : =" — {0,1}"" that transforms a string
of length n into a binary vector of length 7n. Finally, we encode
the string by applying the bin function to each character, and then
concatenating the result of each transformation to form a single
binary vector: f(s) = bin(sy)|[bin(s2)]|| - - - |[bin(sn)

Additionally, unless specified otherwise, our coefficients are A =
1 for all formulations. We find that this coefficient works best with
our simulated annealer.

4.1 String Equality

Broadly, the goal of string equality is to verify whether a string S is
the same as a string T. In our scenario, we are generating a string
S to match a string 7.

4.1.1 Objective Function: The objective function is expressed as:
minimize the sum over all the bits m in a string S, where g;; is set
to —A if the target bit should be 1, and +A if the target bit should
be 0. x; is the value of the bit at position i (e.g. 0 or 1). The penalty
strength A determines how strongly these constraints are enforced
in the solution. For our use case, we set A to be 1.

o) = X122, (qiixi)

Casey et al.

o —A, if target bit should be 1,
1= +A, if target bit should be 0.
x; = the character at position i in string S

4.1.2 QUBO Matrix Formulation: The matrix is a (7n X 7n) QUBO
matrix, using only diagonal entries, which results in a sparse struc-
ture. Each diagonal entry corresponds to one bit position and con-
tains either —A or +A depending on the desired bit value as de-
scribed above. For example, generating the character “a” (ASCII 97
=1100001) requires a 7 X 7 QUBO matrix with diagonal entries [-A,
A, +A, +A, +A, +A, -A].

4.2 String Concatenation

String concatenation involves taking a string s1 and appending a
string s2 to the end of it. One example would be is string s1 =“hello”
and string s2 =“ world”, then s1 + s2 would be “hello world”. We
approach this constraint in the same way as string equality. Essen-
tially, we wish to generate a string which combines two given or
existing strings. Thus, our binary variables, objective function, and
QUBO matrix generation remains the same in that we encode the
desired concatenated string into the QUBO matrix.

4.3 Substring Matching

Substring matching is defined as finding a string T that contains a
substring S. This is very similar to string equality, in that we are
generating a string T which contains a substring S.

4.3.1 Objective Function: Our objective function remains the same
as string equality: we minimize the sum over all the bits m in a
string S, where g;; is set to —A if the target bit should be 1, and +A
if the target bit should be 0.

4.3.2 QUBO Matrix Formulation: When generating our string, we
give as input the length of the larger string that we are generating,
and the substring which must be included in the larger string. When
we are encoding the values in the matrix, we encode the substring
at every possible starting position within the matrix. For example,
if we are generating a 4-character string that must contain the
substring “cat”, then the possible starting position for our substring
is indexes 0 and 1 (assuming a zero-based indexing system). When
there are conflicting entries in the matrix, we overwrite the previous
entries, thus resulting in our substring being encoded in the last
possible starting position in the matrix. Again in the example of the
4-character string containing the substring “cat”, our formulation
would result in “ccat” being encoded into the matrix. This is because
when we initially encode “cat” as starting at position 0, we encode
“cat?", where the “?” is unconstrained (i.e., no entries are given in
our matrix). When we encode “cat” as starting at position 1, we
retain the “c” at position 0, but overwrite the encoding for “a” and
“t” in the matrix with “c” and “a". Thus, instead of “cat?”, we are left
with the encoding for “ccat”.

4.4 String Includes

This operation involves identifying whether a string exists within a
larger string. Our approach is determining where, in a larger string
T, does the substring S begin.

Quantum-Based SMT Solving for String Theory

4.4.1 Binary Variables: we define the binary variables to be x; for
i=0,1,...,n —mwhere n is the length of T and m is the length of S.
Our variable x; = 1 if the substring S starts at position i, otherwise
xi =0.

4.4.2 Objective Function: This approach defines that the objec-
tive function rewards matches between S and T at every possible
starting position in T. The function is defined as:

PR —_ -1
Qi j) = —A X" XL (tiejs sj) * X
Where t;,; is the character at position i + j in string T, s; is the
character at position j in string S, and
1, iftiyj=sj,
6(tivj,s5) = L
0, lfti+j ;.
4.4.3 Penalty Function. In the case of string includes, we need to
enforce that only one starting position is chosen (meaning, only
one x; = 1). We do so by defining the quadratic penalty function:
Qi j) =BELy" XL xixj
Our penalty ensures that if more than one x; = 1, then the energy
of the solution will be penalized (e.g., increased), thus encouraging
the optimization algorithm to select only one starting position.

Further, we define another penalty term which ensures that only
the first valid starting position is chosen:

Q1) = XI5 Ci % 6(T[i: i+ m],S) * x;

S(T[i:i+ml]S) = 1, ifT[i:i+m]=S,

0, else.
0, ifi=0
andC; =4Cj_1+D, ifT[i:i+m]=S
Ci-1, otherwise

In other words, C; is updated (incremented by a constant D) only
when there is a match. If there’s no match, C; remains the same for
the next iteration.

4.4.4 QUBO Matrix Formulation: To create the QUBO matrix, we
create a matrix of the size of the number of possible starting posi-
tions. For example, if we are looking for substring of length three in
a string of length four, we have two starting positions (positions 0
and 1), thus we have a matrix of size 2 X 2. We enforce our objective
and penalty functions to fill the matrix.

4.5 Substring IndexOf

In this constraint, we generate the string which contains a substring
S at a position x within a larger string T.

4.5.1 Objective Function: Our approach maintains the same objec-
tive function as for string equality and substring matching, given
that we are once again generating the string. However, in this in-
stance, we are only enforcing the positions where the substring
should be; we therefore have softer constraints for the rest of the
string, where any ASCII character can appear. In other words, wher-
ever we require a specific string to appear, we encode a stronger or
higher penalty/value (for example 2* the penalty strength A), and
the rest of the string, which could be any character, we encode a
softer constraint (for example, 0.1* the penalty strength A).

HPDC’25, South Bend, IN,

4.5.2 QUBO Matrix Formulation: To create the QUBO matrix, we
create a matrix of the size of 7t X7t, where t is the length of the larger
string T. We enforce our strong constraints where the substring
should appear, and add softer constraints in the remaining positions
such that other valid ascii characters can be generated at those
positions.

4.6 String Length

This operation is used to determine is a string S matches a desired
length L.

4.6.1 Binary Variables: We have a binary string x (e.g., a string,
where each character is transformed into the binary representation
of the ascii number representing that character) of length n. We
determine whether the string is of length L by ensuring that the
first L bits for the string (x1, x2, ..., x7) are equal to 1, while the rest
of the bits (xg1, ..., X) are equal to 0.

4.6.2 Objective Function: Our objective function minimizes the
following function:
Q= Z%:l(_xi) + X i

This function is divided into two parts. The first summation
ensures, or encodes, that we want the first L bits to be 1; that is, for
each i to L, we want x; = 1.

The second summation encodes that we want the remaining
bits to be 0. In other words, for each i from L to n — L where n
is the length of the given string, x; = 0. We combine these two
summations to get the resultant objective function.

4.6.3 QUBO Matrix Formulation: We create a 7nx7n QUBO matrix
for a string of length n, and encode our objective function. That is,
for each position in the matrix along the diagonal that is less than
our desired length L, we encode —A, encouraging those bits to be
used. Otherwise, for the positions that are greater than our desired
length, we encode A to encourage that those bits are 0.

4.7 String replaceAll

While seemingly a simple constraint, the z3 library does not cur-
rently support this string operation. String replaceAll is defined as,
given a string S, replace all instances of the character x within S
with the character y. This results in a new string T, which contains
no instances of x within the string, and only instances of y (along
with whatever other characters were originally in S). We thus treat
this operation similarly to our string equality operation, in that we
generate our desired string.

4.7.1 Objective Function: Our objective function is to minimize
the sum over all of the bits in a string S where g;; is equal to —A if
the bit should be one and A if the bit should be zero:

Qi) = 2% giix
—A, if target bit should be 1,

~ |+A, if target bit should be 0.
x; = the character at position i in string S

qii

Additionally, if the character position j in the input string S
(S[j]) is the character to be replaced x, we use the bit pattern of
the replacement character y. Otherwise, we maintain the same bit
pattern throughout the string.

HPDC’25, South Bend, IN,

4.7.2 QUBO Matrix Formulation: Just as in our string equality
formulation, the matrix is a (7nx 7n) matrix that uses only diagonal
entries. Each diagonal entry corresponds to one bit position and
contains either —A or +A depending on the desired bit value. For
this operation, we take an additional step, in that when building
the matrix, we check at each character position j whether S[j] is
the character x that we wish to replace. If it is, we then enforce the
encoding for character y in the matrix for those seven bits.

4.8 String Replace

This operation is a variation of the previously described operation,
and thus the set up is exactly the same. The only difference is that
when building the matrix, we only replace the first instance of x. We
modify our check at each character position to reflect this change.

4.9 String Reversal

This operation involves taking in a string, and reversing each el-
ement in it such that the output is the reverse of the input. For
example, an input string “hello” would be output from a string
reversal as “olleh”.

To achieve this goal, we perform a similar operation to our string
replace method. We encode our string backwards (e.g., the reverse
of the string) into the QUBO matrix. Our matrix is (7n X 7n), with
the diagonal encoding each desired or target bit (+A for 0 and (—-A)
for 1).

4.10 Palindrome Generation

A palindrome is a string which reads the same way forwards as
it does backwards, for example “abba” or “gobog”. This is a more
complex constraint than the ones we have dealt with earlier, and is
not supported by the z3 library.

4.10.1 Objective Function: Our objective function is looking to
minimize the energy of the system when the mirrored bits are the
same. For example, in a string with length five, we want the energy
of the system to be at a minimum when the character at position 0
matches the character at position 4, and so on. As a reminder, we
are performing these operations at the bit level. At a high level, our
objective function is as follows:
Q(i, j) = Alxi + xj — 2xX})

Where x; is the position at the front of the string, and x; is the
position at the end of the string, and A is our penalty strength.
When x; and x; are equal, this results in the energy of the system
being equal to 0. When x; and x; are not equal, it results in the
energy of the system being A. Thus, when our characters/bits are
not mirrored, we do not have the minimum energy of the system.
Because we are performing these operations at a bit level, we expand
this objective function further to become:

N/2]-1 6
ZJL:O/ IS8 A (s + X7 (N=1-j)+i = 2 X7jui " X7(N-1-j)+i)

Here, we sum over character positions from 0 to just before the
middle. We only go to the middle because both sides are mirrored.
The second summation goes across each bit within the ASCII rep-
resentation of a character. x7;4; is the bit i of the character at j.
X7(N—1-j)+i is the bit i of the the mirrored position of j (at position
N-1-j).

Casey et al.

4.10.2 QUBO Matrix Formulation: To build the matrix, we initially
enforce our penalty of A along the diagonal. We then assign in our
matrix at position Q(i, j) = —2A. This helps ensure that the energy
of our system is minimized when x; == x;.

4.11 Regex Matching

This operation involves generating a string which will match a
given regular expression (regex) pattern. Due to its complexity, our
method supports matching a subset of regex operations, namely
literal characters, character classes, and plus. Literal characters de-
fine specific characters such as ‘a’, ‘b’, or ‘c’. Character classes
involve matching a character from a given set. For example, a regex
with the character class [bc] will match any string that contains
the characters ‘b’ or ‘c’. Finally, the plus operation defines that
there must be one or more of the given character. An example of a
regex would be a[tyz]+b. Some valid solutions to this regex would
be: ‘atytyzb’, ‘azb’, or ‘atyzb’.

4.11.1 Objective Function: Due to the nature of this constraint
(where we are trying to optimize different operations), we define
two objective functions, which are used at different positions de-
pending on the regex constraint at that position.
Our objective function for literals and the plus operation is min-
imizing the following:
ons (x) = Z?zo qi * Xpos-7+i
Where
_)-A, if target bit should be 1,
7= +A, if target bit should be 0.

Xpos-7+i defines the bit i at position xpos within the string. This
enforces the specific character we want at that position.

Our objective function for character classes varies slightly. We
minimize the following:

Opos (x) = Xiechars 2?20 &TJM * Xpos-7+j

Our previous variable definitions hold here as well. In this ob-
jective function, we divide the strength of our penalty coefficient
by the number of characters in our character class to give equal

and shared preference, and encode all the characters within the
character class.

4.11.2 QUBO Matrix Formulation: To create our matrix, we first
identify which patterns we are encoding. That is, if we have the
regex a[bc]+, and we are generating a string of length 3 to match
this pattern, then we know we are encoding a literal, a character
class, and another character class. Once we gather this information,
we are able to appropriately encode our matrix. We consider the
plus constraint as a literal when it appears after a literal, and a
character class when it appears after a character class.

We then encode the appropriate objective function into the ma-
trix depending on if the position in the string is a literal or a char-
acter class.

4.12 Combining Constraints

Often times, SMT solvers will have to find a solution to satisfy
multiple constraints at the same time. To achieve this in our QUBO
formulations, we perform each operation sequentially. That is, if
we first want to reverse the string “hello”, we will run that through

Quantum-Based SMT Solving for String Theory

HPDC’25, South Bend, IN,

Table 1: Results from our approach to sample string constraints. The matrices are abbreviated due to space limitations.

Constraint Matrix Output
-1 0 0 0
0 -1 0 0
0 0 -1 0
Reverse ‘hello’ and replace ‘e’ with ‘a’ ollah
0 0 0 s -1
1.00 0.00 0.00 -~ —2.00 0.00 0.00
0.00 1.00 0.00 0.00 —2.00 0.00
0.00 0.00 1.00 0.00 0.00 —-2.00
Generate a palindrome with length 6 OnFFnO
0.00 0.00 0.00 1.00 0.00 0.00
—2.00 0.00 0.00 0.00 1.00 0.00
0.00 —2.00 0.00 0.00 0.00 1.00
-2.00 0.00 0.00 --- 0.00
0.00 2.00 0.00 0.00
0.00 0.00 2.00 0.00
Generate the regex a[bc]+ with length 5 abcbb
0.00 0.00 0.00 - —1.00
1 0 0 .- 0
o 1 0 - 0
.) . s s e e 0o 0 1 s 0
Concatenate ‘hello’ and * world’, and replace all T" with ‘x hexxo worxd
0O 0 0 -1
0o 0 O 0
0o 2 0 0
. . s L 0 0 6 0 .
Generate a string of length 6 that contains the substring ‘hi’ at index 2 qphiqp
o 0 0 —42

«_»

our solver first. Then, if we want to replace “e” with “a”, we then
will take the output solution of the first iteration of our solver, and
pass it through as the input to the second solver.

5 RESULTS

Table 1 demonstrates some sample constraints. The matrices demon-
strate how the constraints are encoded into the QUBO. Note that
for space considerations, we do not show the full matrix.

When running our experiments, we use DWave’s Simulated
Annealer [28]. However, our QUBO formulations are compatible
with a real quantum annealer, thus we would see similar outputs
from our results, with the additional speedup benefit that quantum
offers. We expect, however, that our palindrome or regex generation,
for example, would produce a different string every time, while still
obeying the given constraints.

The key observations are that our method successfully encodes
each constraint problem into the QUBO matrix, and generates the
expected output. We see that we can transform strings accurately,
and generate strings with structural constraints in the instances of
palindromes and regular expressions. We also are able to generate
"flexible’ examples, even when enforcing substring positions. This
means that our method can generate a unique string, while still
enforcing the necessary constraints.

Our preliminary results demonstrate that our QUBO formula-
tions are a viable approach for encoding a variety of string con-
straints, which offers a pathway to leverage quantum annealing

hardware for problems involving string manipulations that are
challenging for classical solvers.

6 CONCLUSION

Quantum computing offers exciting advantages for problems which
are classically complex. In this work, we presented a novel method
for SMT solving for string theory using quantum annealing. This
preliminary work demonstrates how we can go about defining
string constraint problems in the form of an optimization problem
in QUBO form. We extend the current capabilities of solvers such
as z3 by defining QUBOs for replace all constraints and palindrome
generation.

Future works include testing these formulations on a real quan-
tum computer, as well as using these formulas in applications such
as symbolic execution and program testing. Further, we can create
more formulations based on this preliminary work for other string
constraints.

7 ACKNOWLEDGEMENT

This work was funded by the Center for Quantum Technologies
(CQT) under NSF’s I/UCRC program.

REFERENCES

[1] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Handbook of
model checking, pages 305-343, 2018.

[2] Roberto Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability,
Boolean Modelling and Computation, 3(3-4):141-224, 2007.

[3] Leonardo de Moura and Nikolaj Bjerner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction

HPDC’25, South Bend, IN,

i~
flaat

[10]

[11]

[12]
[13]

[14]

[15]

[19]

[20]

[21

[22]

[23

[24]

and Analysis of Systems, pages 337-340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. A survey of symbolic execution techniques. ACM Computing
Surveys (CSUR), 51(3):1-39, 2018.

Shuvendu Lahiri and Shaz Qadeer. Back to the future: revisiting precise program
verification using smt solvers. ACM SIGPLAN Notices, 43(1):171-182, 2008.
Alessandro B. Trindade and Lucas C. Cordeiro. Applying smt-based verification
to hardware/software partitioning in embedded systems. Design Automation for
Embedded Systems, 20(1):1-19, Mar 2016.

Mingxuan Yuan, Xiugiang He, and Zonghua Gu. Hardware/software partitioning
and static task scheduling on runtime reconfigurable fpgas using a smt solver.
In 2008 IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 295-304, 2008.

Alexandra Bugariu and Peter Miiller. Automatically testing string solvers. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering,
ICSE ’20, page 1459-1470, New York, NY, USA, 2020. Association for Computing
Machinery.

Shang-Wei Lin, Si-Han Chen, Tzu-Fan Wang, and Yean-Ru Chen. A quantum
smt solver for bit-vector theory, 2023.

Murphy Berzish, Mitja Kulczynski, Federico Mora, Florin Manea, Joel D. Day, Dirk
Nowotka, and Vijay Ganesh. An smt solver for regular expressions and linear
arithmetic over string length. In Alexandra Silva and K. Rustan M. Leino, editors,
Computer Aided Verification, pages 289-312, Cham, 2021. Springer International
Publishing.

Sanu Subramanian, Murphy Berzish, Omer Tripp, and Vijay Ganesh. A solver
for a theory of strings and bit-vectors. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), pages 124-126, 2017.
Cesare Tinelli. The smt-lib format: an initial proposal. 01 2003.

Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark Barrett,
and Morgan Deters. An efficient smt solver for string constraints. Form. Methods
Syst. Des., 48(3):206—234, June 2016.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukas
Holik, Ahmed Rezine, and Philipp Riimmer. Trau: Smt solver for string constraints.
In 2018 Formal Methods in Computer Aided Design (FMCAD), pages 1-5, 2018.
G. Karakostas, R.J. Lipton, and A. Viglas. On the complexity of intersecting finite
state automata. In Proceedings 15th Annual IEEE Conference on Computational
Complexity, pages 229-234, 2000.

Frantisek Blahoudek, Yu-Fang Chen, David Chocholaty, Vojtéch Havlena, Lukas
Holik, Ondfej Lengal, and Juraj Si¢. Word equations in synergy with regular
constraints (technical report), 2022.

Z3.seq. https://z3prover.github.io/api/html/ml/Z3.Seq.html.

Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. Z3str3: A string solver with
theory-aware heuristics. In 2017 Formal Methods in Computer Aided Design
(FMCAD), pages 55-59. IEEE, 2017.

Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. cve4. In Computer
Aided Verification: 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings 23, pages 171-177. Springer, 2011.

Raihan Ur Rasool, Hafiz Farooq Ahmad, Wajid Rafique, Adnan Qayyum, Junaid
Qadir, and Zahid Anwar. Quantum computing for healthcare: A review. Future
Internet, 15(3):94, 2023.

Nick S Blunt, Joan Camps, Ophelia Crawford, Robert Izsak, Sebastian Leontica,
Arjun Mirani, Alexandra E Moylett, Sam A Scivier, Christoph Sunderhauf, Patrick
Schopf, et al. Perspective on the current state-of-the-art of quantum computing
for drug discovery applications. Journal of Chemical Theory and Computation,
18(12):7001-7023, 2022.

Dylan Herman, Cody Googin, Xiaoyuan Liu, Yue Sun, Alexey Galda, Ilya Safro,
Marco Pistoia, and Yuri Alexeev. Quantum computing for finance. Nature Reviews
Physics, 5(8):450-465, 2023.

Geeta N Brijwani, Prafulla E Ajmire, and Pragati V Thawani. Future of quantum
computing in cyber security. In Handbook of research on quantum computing for
smart environments, pages 267-298. IGI Global, 2023.

Rozhin Eskandarpour, Pranav Gokhale, Amin Khodaei, Frederic T Chong, Aleksi
Passo, and Shay Bahramirad. Quantum computing for enhancing grid security.
IEEE Transactions on Power Systems, 35(5):4135-4137, 2020.

Olakunle Abayomi Ajala, Chuka Anthony Arinze, Onyeka Chrisanctus Ofodile,
Chinwe Chinazo Okoye, and Andrew Ifesinachi Daraojimba. Exploring and
reviewing the potential of quantum computing in enhancing cybersecurity en-
cryption methods. Magna Sci. Adv. Res. Rev, 10(1):321-329, 2024.

Richard Jozsa. Entanglement and quantum computation, 1997.

Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Information,
2(1):15023, Jan 2016.

D-Wave Systems. Quantum computing | d-wave, 2025. Accessed: 2025-03-14.
Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters.
A dpll (t) theory solver for a theory of strings and regular expressions. In
International Conference on Computer Aided Verification, pages 646—662. Springer,
2014.

[30

[31

[32

[33

&
=

[35

(36]

(37]

'w
&

[39

[40]

[41

[42

[43

[44

[45

[46

[47

S
&

[49

[50

[51

[52

Casey et al.

Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and
Cesare Tinelli. Dpll (t): Fast decision procedures. In Computer Aided Verifica-
tion: 16th International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004.
Proceedings 16, pages 175-188. Springer, 2004.

Leonardo de Moura and Grant Olney Passmore. The Strategy Challenge in SMT
Solving, pages 15-44. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
Clark Barrett, Leonardo Moura, and Aaron Stump. Design and results of the first
satisfiability modulo theories competition (smt-comp 2005). J. Autom. Reason.,
35(4):373-390, November 2005.

Bernd Finkbeiner and Sven Schewe. Smt-based synthesis of distributed systems.
In Proceedings of the Second Workshop on Automated Formal Methods, AFM *07,
page 69-76, New York, NY, USA, 2007. Association for Computing Machinery.
Vidhya Tekken Valapil, Sorrachai Yingchareonthawornchai, Sandeep Kulkarni,
Eric Torng, and Murat Demirbas. Monitoring partially synchronous distributed
systems using smt solvers. In Shuvendu Lahiri and Giles Reger, editors, Runtime
Verification, pages 277-293, Cham, 2017. Springer International Publishing.
Pranav Tendulkar. Mapping and Scheduling on Multi-core Processors using SMT
Solvers. Theses, Universite de Grenoble I - Joseph Fourier, October 2014.

Vikas Hassija, Vinay Chamola, Vikas Saxena, Vaibhav Chanana, Prakhar
Parashari, Shahid Mumtaz, and Mohsen Guizani. Present landscape of quantum
computing. IET Quantum Communication, 1(2):42-48, 2020.

Mark Lewis and Fred Glover. Quadratic unconstrained binary optimization
problem preprocessing: Theory and empirical analysis. Networks, 70(2):79-97,
2017.

Zsolt Tabi, Kareem H. El-Safty, Zsofia Kallus, Peter Haga, Tamas Kozsik, Adam
Glos, and Zoltan Zimboras. Quantum optimization for the graph coloring problem
with space-efficient embedding. In 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE), page 56—-62. IEEE, October 2020.

R. Rietsche, C. Dremel, and C. et al. Bosch. Quantum computing. Electron Markets,
2022.

Chan Gu Kang, Joonghoon Lee, and Hakjoo Oh. Statistical testing of quantum
programs via fixed-point amplitude amplification. Proc. ACM Program. Lang.,
8(OOPSLA2), October 2024.

Noah H. Oldfield, Christoph Laaber, Tao Yue, and Shaukat Ali. Faster and bet-
ter quantum software testing through specification reduction and projective
measurements, 2024.

Asmar Mugqeet, Tao Yue, Shaukat Ali, and Paolo Arcaini. Mitigating noise in
quantum software testing using machine learning, 2024.

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Fred-
eric T. Chong, and Margaret Martonosi. Scaffcc: a framework for compilation
and analysis of quantum computing programs. In Proceedings of the 11th ACM
Conference on Computing Frontiers, CF "14, New York, NY, USA, 2014. Association
for Computing Machinery.

Seungmin Jeon, Kyeongmin Cho, Chan Gu Kang, Janggun Lee, Hakjoo Oh, and
Jeehoon Kang. Quantum probabilistic model checking for time-bounded proper-
ties. Proc. ACM Program. Lang., 8(OOPSLA2), October 2024.

Domenico Cantone, Simone Faro, and Arianna Pavone. Quantum string matching
unfolded and extended. In Martin Kutrib and Uwe Meyer, editors, Reversible
Computation, pages 117-133, Cham, 2023. Springer Nature Switzerland.
Pradeep Niroula and Yunseong Nam. A quantum algorithm for string matching.
npj Quantum Information, 7(1):37, Feb 2021.

Simone Faro, Arianna Pavone, and Caterina Viola. Bridging classical and quantum
string matching: A computational reformulation of bit-parallelism, 2025.
Francesco Pio Marino, Simone Faro, and Antonio Scardace. Practical implementa-
tion of a quantum string matching algorithm. In Proceedings of the 2024 Workshop
on Quantum Search and Information Retrieval, QUASAR ’24, page 17-24, New
York, NY, USA, 2024. Association for Computing Machinery.

Simone Faro, Arianna Pavone, and Caterina Viola. Quantum path parallelism:
A circuit-based approach to text searching. In Xujin Chen and Bo Li, editors,
Theory and Applications of Models of Computation, pages 247-259, Singapore,
2024. Springer Nature Singapore.

Kostas Blekos, Dean Brand, Andrea Ceschini, Chiao-Hui Chou, Rui-Hao Li, Komal
Pandya, and Alessandro Summer. A review on quantum approximate optimiza-
tion algorithm and its variants. Physics Reports, 1068:1-66, June 2024.

Sami Boulebnane and Ashley Montanaro. Solving boolean satisfiability problems
with the quantum approximate optimization algorithm, 2022.

Andriy Miranskyy. Using quantum computers to speed up dynamic testing of
software. In Proceedings of the 1st International Workshop on Quantum Program-
ming for Software Engineering, QP4SE 2022, page 26-31, New York, NY, USA,
2022. Association for Computing Machinery.

https://z3prover.github.io/api/html/ml/Z3.Seq.html

	Abstract
	1 Introduction
	2 Background
	2.1 SMT Solvers
	2.2 Quantum Computing
	2.3 QUBO

	3 Related Works
	3.1 Quantum Software Engineering
	3.2 Quantum Algorithms

	4 A Quantum Approach to SMT Solving
	4.1 String Equality
	4.2 String Concatenation
	4.3 Substring Matching
	4.4 String Includes
	4.5 Substring IndexOf
	4.6 String Length
	4.7 String replaceAll
	4.8 String Replace
	4.9 String Reversal
	4.10 Palindrome Generation
	4.11 Regex Matching
	4.12 Combining Constraints

	5 Results
	6 Conclusion
	7 Acknowledgement
	References

