
Looking for Software Defects? First Find the
Nonconformists

Sara Moshtari, Joanna C.S. Santos, Mehdi Mirakhorli, Ahmet Okutan
Rochester Institute of Technology

Rochester, United States

sm2481@rit.edu, jds5109@rit.edu, mxmvse@rit.edu, Axoeec@rit.edu

Abstract—Software defect prediction models play a key role to
increase the quality and reliability of software systems. Because,
they are used to identify defect prone source code components
and assist testing activities during the development life cycle.
Prior research used supervised and unsupervised Machine Learn-
ing models for software defect prediction. Supervised defect
prediction models require labeled data, however it might be time
consuming and expensive to obtain labeled data that has the
desired quality and volume. The unsupervised defect prediction
models usually use clustering techniques to relax the labeled data
requirement, however labeling detected clusters as defective is a
challenging task. The Pareto principle states that a small number
of modules contain most of the defects. Getting inspired from
the Pareto principle, this work proposes a novel, unsupervised
learning approach that is based on outlier detection. We hy-
pothesize that defect prone software components have different
characteristics when compared to others and can be considered
as outliers, therefore outlier detection techniques can be used to
identify them. The experiment results on 16 software projects
from two publicly available datasets (PROMISE and GitHub)
indicate that the k-Nearest Neighbor (KNN) outlier detection
method can be used to identify the majority of software defects.
It could detect 94% of expected defects at best case and more
than 63% of the defects in 75% of the projects. We compare our
approach with the state-of-the-art supervised and unsupervised
defect prediction approaches. The results of rigorous empirical
evaluations indicate that the proposed approach outperforms
existing unsupervised models and achieves comparable results
with the leading supervised techniques that rely on complex
training and tuning algorithms.

Index Terms—Defect prediction, unsupervised learning, outlier
detection, software metrics, software quality

I. INTRODUCTION

There have been decades of research about defect prediction

with the goal of building models that can help development

teams to detect defect-prone components in software projects

[1]–[26]. Defect prediction models use a variety of metrics

including source code and software process metrics, as well

as data mining techniques to identify defect-prone source

code components. Most of the prior software defect prediction

studies have used supervised classification methods [27]. In the

supervised approach, a model is trained with labeled instances,

and then used to predict the label of the unseen instances. A

key challenge of the supervised defect prediction models is

that they require training data which might be time consuming

and expensive to obtain. Many supervised models proposed

so far [1], [3], [4], [6], [7], [11] use data from previous

releases of a project to predict faulty components in its next

releases (within-project defect prediction). However, in real

life, software projects may not always have historical data that

can be used to build predictive models [28]. Therefore, Cross-
project defect prediction models have been proposed to address

the requirement of training data for each project [8]–[17], [29].

These approaches use data from one or more projects to predict

faulty components in other projects. However, these methods

do not always work well, because of the heterogeneity of

the software projects and obtaining training data with desired

quality is still a challenging task for cross-project defect

prediction methods [28]. Some other works [18]–[20], [27],

[28], [30] propose to use unsupervised learning approaches

for software defect prediction. Some of the unsupervised

approaches which are based on clustering techniques, group

software entities into different clusters. Although they detect

faulty entities from unlabeled data and do not rely on ground

truth, labeling the resulting clusters as either defect-prone (or

not) is another challenging problem that needs to be addressed.

This paper leverages the Pareto principle and uses an

outlier-based defect prediction technique to identify de-

fective software components. Outlier detection is a Machine

Learning technique that identifies objects with very different

characteristics compared to the common characteristics ob-

served for all objects [31]. Outlier detection methods can be

categorized into two groups, i.e., proximity-based methods and

clustering-based methods. We use a proximity-based approach

that detects outliers based on (di)similarity of objects. The

Pareto principle states that 80% of the consequences originate

from 20% of the causes. In the context of software defects,

it means that 20% of the software modules contain 80%

of the faults [32]–[37]. We hypothesize that 20% of the

software modules may exhibit different characteristics than

others and pinpoint the defect-prone components. We use

five well-known proximity-based outlier detection techniques,

i.e., K-Nearest Neighbor (KNN), Local Outlier Factor (LOF),

Local Distance-Based Outlier Factor (LDOF), Local Out-
lier Probabilities (LOOP) and Angle-Based Outlier Detection
(ABOD) in order to detect the outliers, i.e., the so-called “vital

modules” [34]. We evaluate our approach on 16 projects from

the PROMISE and GitHub defect prediction data repositories.

Selected projects are from various domains with different

defect distributions and metric sets. First, we evaluate the

applicability of Pareto principle on each dataset and then

measure the performance of each technique to detect the most

75

2020 IEEE 20th International Working Conference on Source Code Analysis and Manipulation (SCAM)

2470-6892/20/$31.00 ©2020 IEEE

Joanna Cecilia da Silva Santos
Typewritten Text
Preprint

defect-prone components, i.e., the small number of more faulty

ones. The evaluation results indicate that the Pareto principle is

applicable for all of the projects, and the KNN outlier detection

method is able to detect up to 94% of expected defects in 20%

of modules.

We compare our approach with the state-of-the-art unsuper-

vised and supervised defect prediction models. In particular,

we first compare our results with the recent unsupervised

works by Zhang et al. [38] (“Cross-project Defect Prediction
Using a Connectivity-based Unsupervised Classifier” pub-

lished at ICSE’16) as well as the work by Yan et al. [39]

(“File-Level Defect Prediction: Unsupervised vs. Supervised
Models” published at ESEM’17). We also compare our ap-

proach with the supervised approach proposed by Agrawal

and Menzies [40] (Is “Better Data” Better Than “Better
Data Miners”?, published at ICSE’18). We find out that our

outlier-based defect prediction method performs better than

other unsupervised methods. It has a mean F-measure value

of 37%, compared to the 11% and 31% in other unsupervised

approaches. Furthermore, it achieves comparable results with

other supervised methods. The evaluation results indicate that

our approach is a good alternative for highly tuned supervised

methods that rely on labeled training data.

The key novelty of this work is the use of an outlier

detection technique to build a defect prediction model. To the

best of our knowledge, no prior works have used outlier de-

tection models for software defect prediction. After the review

process, we will include the link to our GitHub repository

that releases all of our datasets and the scripts to facilitate the

reproducibility of research findings. The main contributions of

this paper are:

• An empirically grounded work that demonstrates how the

Pareto principle could be leveraged for defect prediction.

• An investigation of using five outlier detection tech-

niques (with different configuration) for software defect-

prediction.

• A comparison of an outlier-based defect prediction ap-

proach with the state-of-the art supervised and unsuper-

vised defect prediction techniques.

The remaining sections of this paper are organized as

follows: Section II provides related works and Section III lists

the research questions and the methodology used to address

them. Section IV conveys the experiment results and Section V

elaborates on the results to highlight the key take-aways.

Section VI reviews the threats to the validity and Section VII

presents the concluding remarks.

II. RELATED WORK

This section discusses previous works on software defect

prediction which are based on supervised and unsupervised

learning approaches:

A. Supervised Defect Prediction Methods

1) Within-Project Defect Prediction: Most initial studies on

software defect prediction used multiple releases of a project.

They built prediction models on a project and evaluated

the model on the same project. Basili et al. [1] assessed

the usefulness of CK metrics [2] for predicting fault-prone

classes in a management information system. Using logistic

regression, these object-oriented (OO) metrics could provide

high performance in fault prediction. Briand et al. [3] also

evaluated the effectiveness of CK metrics and other OO design

metrics to predict faulty components in an industrial project.

To evaluate the prediction model they performed 10-cross

validation. Gyimothy et al. [4] evaluated the applicability of

the CK metrics to predict the number of bugs in classes. Their

experiment on seven versions of Mozilla showed that CBO was

the best metric in predicting the fault-proneness of classes.

Nagappan et al. used code churn, LOC, and code complexity

metrics from Windows XP to estimate the post-release failure-

proneness of Windows Server 2003 [5]. Ostrand et al. [6] used

code metrics such as LOC and file change history to predict the

number of faults in a multiple release software system. They

used a negative binomial regression model for fault prediction.

Denaro et al. [7] used regression models and data from the

Apache 1.3 project to predict defects on the Apache 2.0

project. These studies were conducted in the context of project

defect prediction. However, these approaches are unsuitable

for projects that do not have historical data available to be used

to train the prediction models. Therefore, some researchers

proposed cross-project defect prediction models.

2) Cross-Project Defect Prediction: In cross-project de-

fect prediction studies, prediction models were created based

on one or more projects and the models were evaluated

on other projects. Zimmerman et al. [8] found that among

622 cross-project experiments only 3.4% worked. Turhan et

al. [9] showed that cross-company defect predictors could

not outperform within-company defect predictors. Rahman

et al. [10] evaluated cross-project predictors based on cost-

sensitive measures rather than usual classification measures.

They showed that inspection of a smaller fraction of the code –

in cross-project defect prediction- is as good as within-project

defect prediction and better than a random model. Canfora

et al. [11] proposed multi-objective cross-project predictor

based on the Rahman et al.’s study. They found that multi-

objective predictors perform better than single-objective in

cross-project defect prediction. He et al. [12] and Herbold [13]

used distributional characteristics of datasets to select suitable

training data for projects without historical data. Singh and

Verma [14] showed that cross-project predictors that were built

using design metrics are good predictors for software faulty

modules. Panichella et al. [15] proposed a combined approach

based on different classifiers that improve the performance of

cross-project predictors. Xia et al. [41], Ryu et al. [16] and

Li et al. [29] proposed methods to improve the performance

of cross-project defect predictors. Kamei et al. [17] proposed

cross-project predictors that identify source code changes that

have a high risk of introducing a defect. The review reveals

that cross-project defect prediction studies have challenges of

selecting suitable training data because of heterogeneity [42]

and used different methods to improve the performance of

these kinds of predictors.

76

joanna
Typewritten Text
Preprint

B. Unsupervised Defect Prediction Approaches

Unsupervised approaches try to detect defective compo-

nents from unlabeled data. They used clustering algorithms

to capture software defect clusters. Zhong et al. [18] used

k-means and Neural-Gas clustering algorithms to cluster soft-

ware modules into a small number of coherent group. Then,

the software engineering expert inspected different clusters to

label them as either fault-prone or not fault-prone. Their results

showed that this unsupervised method achieves comparable

classification accuracies with other classifiers. Bishnu and

Bhattacherjee [19] used k-means algorithm for fault prediction

when the fault data for modules are not available. They used

Quad Tree-based method and the concept of clustering gain

to assign the appropriate initial cluster centers. They showed

that the performance of the Quad-tree based fault predictor

is comparable with the supervised learning approaches. Park

and Hong [20] built unsupervised models for fault prediction

using clustering algorithm. They tried to solve the issue

of clustering algorithms that is the number of clusters, by

using Expectation–Maximization (EM) and Xmeans, which

determine the number of clusters automatically. Zhang et

al. [30] proposed connectivity-based unsupervised classifier

using spectral clustering. They considered the connectivity

among software entities based on similarity between metric

values. They showed that this unsupervised approach achieves

impressive performance in a cross-project defect prediction.

In these studies, labeling the clusters as defect-prone or non-

defect-prone is a challenging problem. Zhang et al. [38] tried

to solve the labeling issue by using average metrics value in

each cluster. They considered the cluster with higher average

value as defective. Fu and Menzies [43] and Yang et al.

[28] used unsupervised approaches, which are not based on

clustering algorithms, for change-level defect prediction. Yan

et al. [39] used the same approach for file-level defect predic-

tion. Despite the importance and ease of use of unsupervised

approaches, limited studies have been conducted in this area.

III. EXPERIMENT DESIGN

The approach proposed by this paper relies on the idea

that the Pareto principle can be applicable in the context of

software defect prediction, where a small number of modules

contain most of the observed defects. Leveraging the Pareto
principle, we further hypothesize that these modules may

have different characteristics when compared to other modules

in a software project. Therefore, we develop an approach

using outlier detection techniques to identify them and thereby

predict the software defects.

A. Data Collection

We examine data from two publicly-available defect predic-

tion datasets: PROMISE [44] and GitHub [45]. We chose to

evaluate our approach using datasets that are publicly-available

to reduce the replicability concerns [46]. A brief description

of each dataset and selected metrics:

• The PROMISE dataset [44] contains open source Java

projects and has 20 object-oriented metrics [2], [47]–[51]

at file level. It has been used widely in defect prediction

studies. We selected 10 projects with different defect

distribution to evaluate our outlier-based approach. We

selected the project releases in PROMISE that have been

used in recent defect prediction studies [38]–[40].

• The Github dataset [45] is created by gathering infor-

mation from open source Java projects on GitHub. This

dataset covers projects from different domains and has

different sets of metrics. We used size, documentation,

object-oriented, complexity and code duplication metrics

at class level from this dataset [52]. We selected six

projects some of which used in prior works [53] from

different domains including Android library, language

processing, search engine, Java framework, database, and

data processing platform with varying sizes ranging from

6 KLOC to 420 KLOC. For each project we selected a

version that had larger number of defects.

All projects are from different domains, have diverse size and

varied percentage of defective components. Furthermore, the

two datasets have different sets of metrics which are calculated

at different granularity levels. Therefore, we evaluate our ap-

proach and compare it with other approaches by using different

sets of metrics at file and class granularity levels. Details of

the selected projects are provided in Table I that shows the

total number of modules (#Modules) in each project, the lines

of code (#LOC), the number of defective modules (#Defective
Modules) and the ratio of them (%Defective Modules).

B. Research Questions

While developing an outlier-based software defect predic-

tion approach, we investigate five research questions:

RQ1 Does the software defect distribution in our datasets
follow the Pareto principle?

The Pareto principle has been evaluated on a limited number

of projects in a few previous studies in terms of defect distribu-

tion [32]–[37]. They have demonstrated that the fundamentals

of the Pareto principle in software defects distribution hold,

but the actual percentage of “vital” and “trivial” modules

can vary [34]. Since this work began with the idea that we

can rely on the Pareto principle for defect prediction, this

research question investigates whether the Pareto distribution
is applicable to our datasets or not.

RQ2 Can an outlier detection technique find buggy modules
that account for 80% of the defects in a project?

In practice, software engineers have to make a trade-off

between the accuracy of a model and its cost. This research

question investigates to which extent an outlier-based defect

prediction technique can be successful. Granted that these

techniques achieve suitable performance (in terms of precision

and recall) that relieves the need for manually curating a

training dataset for defect prediction, which is labor-intensive

and costly.

RQ3 Which outlier detection technique is more accurate for
defect prediction?

77

joanna
Typewritten Text
Preprint

TABLE I: Projects used for evaluation

Dataset Project #Modules LOC
#Defective
Modules

%Defective
Modules

PROMISE Ant 1.7 745 208653 166 22.3
Arcilook 1.0 234 31342 27 11.5
Camel 1.0 339 33721 13 3.8
Ivy 2.0 352 87769 40 11.4
Jedit 4.0 306 144803 75 24.5
Log4j 1.0 135 21549 34 25.2
Poi 2.0 314 93171 37 11.8
Tomcat 6.0 858 300674 77 9
Xalan 2.4 723 225088 110 15.2
Xerces 1.3 453 16795 69 15.2

GitHub Android 2013-07 98 6294 17 17.3
Antlr 2014-02 479 49090 21 4.4
ElasticSearch 2014-02 5908 420659 678 11.5
Junit 2010-04 658 14988 22 3.3
OrientDB 2013-12 1847 221572 280 15.2
HazelCast 2014-05 3413 193296 380 11.1

Prior studies suggest that easy-to-use classifiers, such as Naive

Bayes and Logistic Regression [27], [54], tend to perform

well in defect prediction. In this question, we investigate

whether this conclusion hold for an unsupervised outlier-based

defect prediction approach that uses different techniques such

as distance-based, density-based and angle-based, and which

technique performs better compared to others.

RQ4 How does a defect predictor built based on an unsuper-
vised outlier detection technique perform in comparison
to the state-of-the-art unsupervised approaches?

Limited number of studies used unsupervised approaches

for software defect prediction to address the challenge of col-

lecting training data. In this part of the research, we investigate

the performance of the proposed outlier-based software defect

predictor in comparison to the predictors built with other

unsupervised approaches [38], [39].

RQ5 Can a defect predictor built based on an unsupervised
outlier detection technique perform well enough to
provide comparable results with the state-of-the-art
supervised approaches?

Supervised approaches have been widely used in software

defect prediction. Unsupervised approaches usually under-

perform supervised approaches. This research question inves-

tigates whether the performance of the proposed outlier-based

software defect predictor is comparable to the predictors built

with supervised approaches [40].

We performed a series of experiments to answer these five

research questions. The specific methods used to answer each

research question are further explained in the next subsections.

C. RQ1: Evaluating the Pareto Principle in our Dataset

To investigate whether the Pareto principle applies to our

dataset, we used Alberg diagrams [55], [56]. The concept of

the Alberg diagram is that, for each project in our dataset,

if we sort software modules in decreasing order with respect

to the percentage number of defects (i.e., the total number of
defects in a file fi divided by the total number of defects within
the project), then, we can plot the cumulative percentages of

defects for different percentages of modules.

D. RQ2: Outlier-Based Defect Detection
This paper uses proximity-based outlier detection ap-

proaches to detect vital few modules that contain most of

the defects. Proximity-based approaches consider an object as

outlier if the proximity of the object to its nearest neighbors

significantly deviates from the proximity of other objects

to their nearest neighbors. Since proximity-based approaches

do not require any training data, they are considered as

unsupervised methods [31]. There are three types of proximity-

based approaches which are distance-based, density-based
and angle-based techniques. To investigate the feasibility of

using outlier-based detection approaches for creating defect

prediction models, we used five outlier detection techniques:

• K-Nearest Neighbor (KNN): It is a distance-based

technique that measures the degree of outlier-ness of a

data object based on the distance d to its k-th nearest

neighbor [57]. Each data point is ranked based on its

distance to its k-th nearest neighbor. The top N points in

this ranking are considered as outliers.

• Local Outlier Factor (LOF): It is a density-based outlier

detection technique [58]. It captures relative degree of

isolation for each data object and is based on the density

around the data object and its k-nearest neighbors.

• Local Distance-based Outlier Factor (LDOF): It con-

siders the relative location of an object to its K nearest

neighbors to determine the degree to which the object

deviates from its neighborhood [59]. For each data object,

LDOF is calculated as KNN distance divided by KNN in-

ner distance where KNN distance is the average distance

of the data object to its K nearest neighbors and KNN

inner distance is average distance among its K nearest

neighbors.

• Local Outlier Probabilities (LoOP): It is a density-

based outlier detection technique that calculates the prob-

ability of outlierness for each data object [60].

• Angle-Based Outlier Detection (ABOD): It is an angle-

based outlier detection technique that considers the vari-

ance in the angles between the difference vectors of a

point to its nearest neighbors [61]. We use the improved

78

joanna
Typewritten Text
Preprint

version of ABOD algorithm which is called FastABOD

and is suitable for large datasets.

For the distance-based approaches, we used the Euclidean
distance to measure the separation between neighbors. Fur-

thermore, the K parameter for each of these algorithms was

experimentally set to 10, 30, 50, 100 and 200. The perfor-

mance of the algorithms did not improve for larger parameter

values like 100 and 200. Therefore, we excluded 100 and 200,

and used 10, 30, 50 as parameter values.

Our approach encompasses two steps: (1) We use code

metrics and rely on various proximity-based approaches (e.g.

Euclidean distance) to calculate the dissimilarity between each

module and other modules in its neighborhood. (2) We rely

on the generated score by these algorithms to identify the

non-conformist modules. We sort these software modules in

descending order based on their outlier scores and consider the

top 20% of these modules as defective modules. We performed

the experiments on 16 project releases that are described in

Table I. We conducted a total of 240 experiments (16 datasets

× 5 outlier detection techniques × 3 parameters) to evaluate

the performance of the outlier-based detection for software

defect prediction.

Leveraging the Pareto principle, the top 20% of the ranked

modules were considered as more defective-prone elements in

each experiment and it is expected that 80% of the defects

will be contained in these top-ranked modules. Therefore, we

propose the Recallof 80% as performance measure to evaluate

if outlier detection techniques can predict the majority of

defects. We use Recallof 80% because our goal is to examine
if a simple approach based on outlier detection can help
programmers to find the majority of bugs (those 20% “vital
modules”). However, only this research question will rely on

Recallof 80% and the remaining research questions in the paper

will rely on recall.

The Recallof 80% is defined as

Recallof 80% =
NODD

0.80 × TND
(1)

where NODD represents the number of detected defects and

TND shows the total number of defects.

E. RQ3: Most Accurate Outlier Detector

To answer this research question, we compare the per-

formance of different predictors using five different outlier

detection mechanisms. To select the best performing outlier

detection technique, we used the Recallof 80% in Equation

1, and the Precision, Recall and F-measure in Equations 2,

3, and 4 as performance measures. In Equation 2, NODDM

represents the number of detected defective modules and

NOMPD shows the number of modules predicted as defective.

In Equation 2 TNDM represents the total number of defective

modules.

Precision =
NODDM

NOMPD
(2)

Recall =
NODDM

TNDM
(3)

F −measure = 2 ∗ Precision*Recall

Precision+Recall
(4)

F. RQ4: Comparing with State-of-the-Art Unsupervised Ap-
proaches

We compare our approach with two state-of-the-art unsu-

pervised approaches. The one that uses connectivity-based

clustering technique for defect prediction and the one that uses

the simple sorting approach:

1) “Cross-project Defect Prediction Using a Connectivity-
based Unsupervised Classifier” by Zhang et al. [38] at

ICSE’16.

2) “File-Level Defect Prediction: Unsupervised vs. Super-
vised Models” by Yan et al. [39] published at ESEM’17.

1) Selection Rationale: We chose the work by Zhang et

al. [38] because they propose a simple approach for labeling

clusters as defective or non-defective which is a challenging

problem for clustering-based defect prediction approaches.

Furthermore, their clustering-based approach has good per-

formance for both cross-project and within-project defect

prediction. We also selected the Yan et al. [39] that was

one of the first works that emphasized the value and ease

of use of simple unsupervised techniques in file-level bug

predictions. The approach used in this study is valuable,

because it demonstrates that defect prediction is possible with

simple methods [43]. The underlying approaches in each of

these papers are briefly summarized in the next subsections.

2) Overview of Zhang et al. Work: This article uses spectral

clustering that is a connectivity-based clustering approach for

defect prediction. Their unsupervised approach is based on

the findings that defective entities tend to cluster around the

same neighbourhood [62]. Therefore, they partition software

modules into two clusters based on the similarity between

them. They create a software graph by considering software

modules as nodes and the similarity between them as edge

weights. Then, they perform spectral clustering on the software

graph and use the relationship between metrics and defect

proneness to label clusters. Gaffney [63] show that larger files

are more defect-prone compared to smaller files. Therefore,

they calculate the summation of metrics for each software

module and consider the cluster with a higher average sum-

mation as defective.

3) Overview of Yan et al. Work: This article uses the

unsupervised model proposed by [39]. Their approach is based

on Koru et al.’s finding that smaller modules are proportionally

more defect-prone and hence should be inspected first [64].

Their unsupervised model is built by ranking files in descend-

ing order according to the reciprocal of their corresponding

raw metric values. They built different unsupervised models

based on the value of each metric. Specifically, for each code

metric M , the corresponding model is R(i) = 1/M(i) where

R is the predicted risk value for file i. The unsupervised

models which were based on Average Method per Class

(AMC) and Response for Class (RFC) metrics had the best

recall of defective files. We compare our best model KNN-

50 with their best unsupervised model that is based on the

79

joanna
Typewritten Text
Preprint

RFC metric (which is available in all datasets). The Precision,

Recall and F-measure are used as performance measures.

G. RQ5: Comparing with State-of-the-Art Supervised Ap-
proaches

We compare our approach with the state-of-the-art super-

vised approach entitled Is “Better Data” Better Than “Better
Data Miners”, published at at ICSE’18 and authored by

Agrawal and Menzies [40].

1) Selection Rationale: We chose the work by Agrawal and

Menzies [40] because it uses a complex auto tuning approach

to enhance a number of supervised bug prediction models.

Their approach relies on fixing the issues in imbalanced

datasets and therefore creates better training data for bug

prediction algorithms.

2) Overview of Agrawal and Menzies Work: This pa-

per [40] tunes parameters for SMOTE [65] which is a widely

used approach for handling the data imbalance in software

engineering. SMOTE handles class imbalance by sub-sampling

the majority class and over-sampling the minority class. The

paper tunes the SMOTE parameters for each dataset to im-

prove the performance of defect predictors. The underling

assumption of this work is that there are enough data from

a given project to optimize the bug prediction models for that

project. The approach called SMOTUNED uses differential

evolution for finding the best set of parameters. SMOTUNED

uses performance measures Precision, Recall and F-Measure

as fitness function and tries to maximize them on the same

datasets. F-measure is used as performance metric while

comparing our results with this approach.

IV. RESULTS

The results obtained for each research question listed in

Section III-B are provided in the next subsections:

A. RQ1: Pareto Principle on the selected datasets

To test the applicability of the Pareto principle, the Alberg

diagram of all projects are created. Table II shows information

obtained from Alberg diagrams which is percentage of defects

that exist in 20% of modules for each project. All projects

follow the Pareto principle where 20% of their modules cover

over 80% of the software defects. In particular, for 13 of these

projects, the 20% of the modules covered all the defects in

the project. In the Ant, and Jedit projects, 20% of modules

covered between 90% to 99% of the defects. In Log4j, 20%

of modules covered about 80% of the defects. All of the

projects confirmed the applicability of the Pareto principle

where the majority of the defects existed in close to 20% of

the modules. Therefore, we could leverage the Pareto principle

for the aforementioned projects to detect software components

that contain the majority of defects.

RQ#1 Findings:

TABLE II: The percentage of defects in 20% of software

modules.

% Defects in 20%
of Modules Projects

100
Arcilook, Camel, Ivy, Poi, Tomcat, Xalan,

Xerces, Android, Antlr, ElasticSearch,
Junit, OrientDB, HazelCast

90-99 Ant, Jedit
80-89 Log4j

Fig. 1: Boxplot for the Recallof 80% for each outlier detection

approach with K values 10, 30, and 50.

— The Pareto principle is applicable for the software

defect distribution in the PROMISE and Github

projects tested.

B. RQ2: Outlier-Based Defect Detection

We hypothesized that 20% of modules (the “vital modules”)

shown in RQ1 would exhibit different characteristics com-

pared to other modules. Therefore, we use outlier detection

techniques that could detect the small portion of modules that

contain the majority of faults.

To answer RQ2 we calculate the Recallof 80%. Because

we consider 20% of the modules in each project as faulty, we

expect that about 80% of the faults can be detected in these

vital modules. Therefore, we use Recallof 80% as performance

measure to detect how successful the proposed oulier-based

prediction models are in detecting these vital modules. Fig.

1 shows the boxplot for the Recallof 80% for all projects.

The overall observation for the outlier detection techniques

is that an increase in “K” parameter leads to an increase in

Recallof 80%. In particular, our highest Recallof 80% is 94%

when using KNN with a K value of 30 or 50. We evaluated

greater values of the K parameter (100, 200), but they did not

improve the performance of the models. Therefore, we report

the results obtained by setting the value of the K parameter

up to 50. The KNN with a K value of 50 exhibits a high

Recallof 80% on the projects Ant, Ivy, JEdit, Tomcat, Android,

and Antlr. Their Recallof 80% are 0.84, 0.83, 0.94, 0.82, 0.80,

and 0.88, respectively. As shown in box plot of the best model

(KNN-50) the Recallof 80% is above 0.83 for 25% of the

80

joanna
Typewritten Text
Preprint

projects, above 0.72 for 50% of the projects and above 0.63

for 75% of the projects.

RQ#2 Findings: The defect predictor built with an outlier

detection technique is simple and does not require any

training data or optimizations and can detect the majority

of the bugs rooted in nonconformist (outlier) modules.

The best performing KNN model (with k = 50) detects

94% of the defects. The Recallof 80% for KNN-50 is

above 72% for half of the projects and above 83% for

a quartile of the projects.

C. RQ3: Best Performing Outlier Detection Technique

The proposed defect prediction model which is based on

outlier detection techniques can be used as a binary classifi-

cation model. It classifies 20% of the modules with highest

outlier scores as faulty and the remaining modules as non-

faulty. To make a comprehensive evaluation for selecting the

best performing outlier detection technique, in addition to

Recallof 80%, we consider Precision, Recall and F-measure

as performance measures. Fig. 2 shows the box plots of

these performance measures for different outlier detection

techniques. The overall trend is similar to the trend ob-

served in Fig. 1. An increase in “K” parameter leads to

an increase in the Recall, Precision and F-measure in all

outlier detection techniques. KNN, which is a simple distance-

based outlier detection algorithm, has higher Recall, Precision

and F-measure in detecting faulty components. FASTABOD

which is an angle based technique perform poorly in defect

prediction. Density-based outlier detection techniques such as

LOF and LoOP perform better than angle based approach,

but weaker than KNN. KNN with K = 50 performs better

than other techniques while identifying defective modules.

The maximum value of Recall, Precision and F-measure for

KNN-50 is 0.65, 0.63 and 0.60 and the mean values are 0.51,

0.33 and 0.37. We used Wilcoxon Signed-Rank Test to see

if there is a statistically significant difference between the

performance of the KNN-50 technique and the other outlier

detection techniques. For the comparison, we considered all

the models with K = 50. The p-values of comparing the

four performance measures (Recallof 80%, Precision, Recall

and F-measure) between KNN and other outlier detection

techniques are shown in Table III. The results show that all

p-values are <0.05 that shows KNN-50 performs significantly

better than the other outlier detection techniques in terms of

Recallof 80%, Precision, Recall and F-measure.

Based on the results of the first two questions we conclude

that:

RQ#3 Findings: The KNN outlier detection technique

achieves promising results for software defect prediction

and its performance is significantly better than other more

complex outlier detection techniques.

(a) Recall

(b) Precision

(c) F-Measure

Fig. 2: Boxplots of the Precision, Recall and F-measure for

each outlier detection with K values 10, 30, and 50.

TABLE III: Wilcoxon signed-rank test for KNN vs. other

outlier detection techniques (K = 50 for all the models).

LOF LoOP LDOF FAST
ABOD

KNN Recall of 80% 0.00096 0.00174 0.00064 0.00044
Precision 0.00096 0.00148 0.00064 0.00044
Recall 0.00096 0.00094 0.00064 0.00044
F-measure 0.00096 0.00124 0.00064 0.00044

81

joanna
Typewritten Text
Preprint

(a) Recall (b) Precision (c) F-Measure

Fig. 3: Comparison results of our best outlier-based approach (KNN-50) with Zhang et al. [38] and Yan et al. [39] unsupervised

approaches

D. RQ4: Comparison with the State-of-the-art Unsupervised
Defect Prediction Approaches

In this section, we compare our outlier-based defect pre-

diction approach with two state-of-the-art unsupervised ap-

proaches. An unsupervised work presented in “Cross-project
Defect Prediction Using a Connectivity-based Unsupervised
Classifier” by Zhang et al. [38] published at ICSE’16 and

the other work presented in “File-Level Defect Prediction:
Unsupervised vs. Supervised Models” by Yan et al. [39]

published at ESEM’17. The comparison results are shown in

Fig. 3. The results show that with regard to Recall, Precision

and F-measure Yan et al.’s [39] simple sorting-based approach

performs weakly in comparison with our approach and Zhang

et al. [38] approach. Recall, Precision and F-measure of their

unsupervised approach are very low with mean values of

0.31, 0.07 and 0.11, respectively. The experiment results reject

the claim that decades of study on defect prediction were

complicated needlessly [28]. As shown in Fig. 3, Machine

Learning-based approaches perform significantly better than

the simple sorting-based approach.

Zhang et al. [38] clustering-based approach has better Recall
in comparison to our best outlier-based approach. However,

low values of Precision show that their approach produce

a lot of False Positives (FP) that could increase the effort

required for code inspection. F-measure values show that our

simple outlier-based approach (KNN-50) performs better than

Zhang et al. [38] clustering-based approach. While the mean

value of F-measure among all datasets for our outlier-based

model is 0.37, Zhang et al. [38] approach has a mean value

of 0.31. F-measure value for our approach was 0.60 in best

case which was 0.57 and 0.19 in Zhang et al. and Yan et al.

approaches. The p values of the Wilcoxon Signed-Rank Test
provided in Table IV show that the F-measure of the outlier

detection approach is significantly better than the state-of-the-

art unsupervised approaches [38], [39].

TABLE IV: Wilcoxon signed-rank test for F-measure of

outlier-based approach (KNN-50) vs. F-measure of the state-

of-the-art unsupervised approaches.

Unsupervised Approaches
Clustering

(Zhang et al. [40])
Sorting RFC

(Yan et al. [38])
Outlier-Based
(KNN-50) 0.03572 0.00064

RQ#4 Results (Comparison with state-of-the-art un-
supervised approaches):
— The proposed simple outlier-based approach (KNN-

50) performs significantly better than state-of-the-art

unsupervised approaches. While the mean value of

F-measure for Zhang et al. [38] and Yan et al. [39]

studies are 0.31 and 0.07 respectively, the mean value

of F-measure for our approach (KNN-50) is 0.37.

— Weak performance of Yan et al. [39] sorting-based

approach on the various selected datasets (which

contains different projects from various domains

with different metric sets) rejects the claim that a

simple sorting based approach can perform as good

as or better than more complicated approaches [28].

E. RQ5: Comparison with a State-of-the-art Supervised Ap-
proach

We compare our best outlier-based prediction model (the

KNN-50) with the labour-expensive, supervised and tuned

models presented in Is “Better Data” Better Than “Better
Data Miners”? by Agrawal and Menzies [40] at ICSE’18. To

perform the comparison, we compared the KNN-50 with 6

supervised models that have been used by Agrawal and Men-

zies [40]. We used Random Forest (RF), Logistic Regression

(LR), KNN Classifier, Naive Bayes (NB), Decision Tree (DT),

and Support Vector Machines (SVM) as supervised models.

These classifiers were ranked from best to worst classifiers for

82

joanna
Typewritten Text
Preprint

Fig. 4: Comparing outlier-based approach (KNN-50) with the Agrawal and Menzies approach [40]

Fig. 5: Boxplots for comparing outlier-based approach (KNN-

50) with Agrawal and Menzies supervised approach [40]

defect prediction [66]. KNN classifier finds K-most similar in-

stances from training data and selects the class label with high

frequency among K instances for prediction. However, our

KNN outlier-based approach considers the euclidean distance

between the Kth nearest neighbor as outlier score. During the

experiments, we found that running SVM for larger datasets

with auto tuning required a lot of time, therefore we excluded

it from our experiments. Agrawal and Menzies [40] tuning

approach shuffles the dataset and then selects the train and

test data for cross-validation. We considered the median of

the F-measure value obtained from 15 shuffling as their final

measure for each supervised model as mentioned in their

study. The comparison results are shown in Fig. 4. The

performance of the KNN outlier detection approach varies on

different datasets. The boxplots of the supervised approaches

and our best model (KNN-50) are shown in Fig. 5. The mean

value of the F-measure for our outlier-based approach is

0.37 which is in order 0.37, 0.36, 0.41, 0.38 and 0.37 for

KNN, NB, RF, LR and DT methods. To see if there is any

significant difference between our approach and their highly

tuned supervised approaches, we compared the F-measure

values using the Wilcoxon Signed-Rank Test. The p-values

TABLE V: Wilcoxon signed-rank test for Agrawal and Men-

zies [40] vs. our outlier-based approach (KNN-50)

Supervised Approaches
KNN NB RF LR DT

(KNN-50) 0.79486 0.87288 0.06876 0.96012 0.96012

that are provided in Table V show that there is not any

significant difference between our results and their highly

improved supervised results (all p-values>0.05). The simple

outlier detection approach, which does not require any training

data, can perform as good as the supervised defect prediction

approaches that are highly tuned to improve the F-measure in

within-project experiments.

RQ#5 Results (comparison with a supervised state-of-
the-art approach):
— There is no statistically significant difference be-

tween the performance of Agrawal and Menzies [40]

and our proposed outlier-based defect prediction

technique. However, by using our approach, there is

a significant reduction in the effort required to collect

and label training data sets and tune prediction

algorithms.

V. DISCUSSION

Decades of research have been devoted to develop bug de-

tection techniques using complex supervised learning methods.

However, the cost of collecting training data is a great barrier

to start using defect prediction methods in the industry [9],

[67]. In practice, software engineers have to make a trade-

off between the model accuracy and the cost of building a

successful defect predictor. They need to deal with various

challenges, including obtaining accurate training data to fine-

tune a complex learning algorithm. In this paper, we want

to check whether a predictor based on an outlier detection

83

joanna
Typewritten Text
Preprint

technique that does not require training data, is able to achieve

an acceptable defect prediction performance or not?

While there was no statistically significant difference be-

tween our work and Agrawal and Menzies’s work [40], our

approach is significantly simpler and requires no training data

or tuning. Therefore, during the early stages of software de-

velopment where there are not enough bug reports or in cases

that developers do not have labeled data, the best approach

could be to focus on source files that are nonconformist and

appear as outliers. These files could count for a significant

number of the defects in the system.

Agrawal and Menzies work [40] used SMOTUNED auto

tuning to create better training data and therefore improve the

recall of the state-of-the-art works by 20%. Similar results

were achieved using the outlier detection method, without

a tuning need. We do not argue against supervised learning

techniques for bug prediction, however in situations where

the ground truth data is limited, outlier-based bug prediction

method can be a viable approach and bug prediction process

can be simplified.

Zhang et al. [38] proposed a clustering based unsupervised

learning approach that were among the best models in com-

parison to other unsupervised and supervised approaches. Yan

et al. [39] used a simple file-level bug prediction approach that

does not have any complications but, they didn’t evaluated the

False Positive rate of the approach. We re-implemented and

evaluated their approach on other datasets. The experiment

results indicate that their approach suffers from low Recall,

Precision and F-measure. We show that these approaches could

be outperformed by the outlier-based unsupervised defect

prediction method. As a future work, we plan to optimize

the techniques used in the proposed approach to improve the

defect prediction performance further.

VI. THREATS TO VALIDITY

In this section we discuss threats present in our study:

Internal Validity. The internal validity is related to un-

controlled aspects of the study that may affect the results.

The potential threat to the validity of our approach is how

well we compared our results with state-of-the-art supervised

and unsupervised approaches. To eliminate this threat, first,

we implemented our approach on part of the datasets that

were used in these studies. For comparison with Agrawal and

Menzies study [40] we used the raw data from dump files

that were available in their Github repository and executed

their application to check if the results are the same or not.

For comparing with Yan et al.’s study [39] we re-implemented

their approach and calculated recall, precision, and F-measure.

Since they only reported recall as a performance measure, by

comparing recall we found that our implementation generates

the same results.

External Validity. The external validity is related to the

possibility to generalize the findings of a study. The most

important threat to the external validity of this study is that

our unsupervised approach that is based on the Pareto Principle

may not be generalized to other projects. To mitigate this, we

selected a large number of (16) data sets with different sizes

and fault distributions. However, future work might include

verifying our unsupervised approach on additional software

projects, particularly those which are implemented in different

programming languages. Furthermore, we have provided the

necessary details and scripts that will make it easy for others

to replicate our study.

VII. CONCLUSIONS

This work proposes a simple and easy to use unsupervised

approach based on an outlier detection technique to predict

defect-prone components that contain most of the software

defects. Supervised defect prediction models that have been

studied in the literature rely on the labeled training datasets

that may not be easy to obtain. Unsupervised defect prediction

methods relax the requirement of the training data. However,

most unsupervised defect prediction approaches that have been

proposed so far use clustering algorithms to group the software

components into defect-prone and non-defect-prone clusters,

and identifying faulty clusters is a key challenge that remains

to be addressed.

This paper leverages the Pareto principle to detect 20 per-

cent of components that contain the majority of faults by using

outlier detection methods. It uses 16 publicly available projects

at the PROMISE and GitHub defect prediction repositories.

First, we evaluate the Pareto principle in these projects and

show that all projects support the Pareto principle in terms of

defect distribution. Then, we evaluate different distance-based,

density-based, and angle-based outlier detection techniques to

find software components that contain most of the defects. The

project modules are ordered in the descending order by their

outlier score and the top 20% of the modules are considered

as most faulty ones. The KNN outlier detection method (with

K = 50) performs better than other outlier detection algo-

rithms and could detect up to 94% of the software defects. We

compare the performance of our approach with the state-of-

the-art unsupervised and supervised approaches. The proposed

approach performs significantly better than other unsupervised

approaches. Our approach could predict faulty components

with a maximum F-measure value of 60% and a mean value

of 37% which are 19% and 11% in the sorting-based and 57%

and 31% in the clustering-based unsupervised approaches. Fur-

thermore, the experiment results indicate that the performance

of our simple outlier detection based approach, which does not

require any training data, achieves comparable results with the

highly tuned supervised approach proposed by Agrawal and

Menzies [40].

REFERENCES

[1] V. R. Basili, L. C. Briand, and A. W. L. Melo, “Validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
software engineering, vol. 22, no. 10, pp. 751–761, 1996.

[2] S. R. Chidamber and A. C. F. Kemerer, “metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, pp.
476–493, 1994.

[3] L. C. Briand et al., Investigating quality factors in object-oriented de-
signs: an industrial case study. in Proceedings of the 21st international
conference on Software engineering. ACM, 1996.

84

joanna
Typewritten Text
Preprint

[4] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Transactions on Software engineering, vol. 31, no. 10, pp. 897–910,
2005.

[5] N. Nagappan, T. Ball, and B. Murphy, “Using historical in-process and
product metrics for early estimation of software failures. in software reli-
ability engineering,” in 2006. ISSRE’06. 17th International Symposium
on IEEE, 2006.

[6] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, Where the bugs are. in
ACM SIGSOFT Software Engineering Notes. ACM, 2004.

[7] G. Denaro and M. Pezzè, An empirical evaluation of fault-proneness
models. in Proceedings of the 24th International Conference on Software
Engineering. ACM, 2002.

[8] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2009,
pp. 91–100.

[9] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative
value of cross-company and within-company data for defect prediction,”
Empirical Software Engineering, vol. 14, no. 5, pp. 540–578, 2009.

[10] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the ”imprecision” of
cross-project defect prediction,” in Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineer-
ing ACM: Cary, N. Carolina, Ed. p, 2012, pp. 1–11.

[11] G. Canfora et al., Multi-objective Cross-Project Defect Prediction. in
2013 IEEE Sixth International Conference on Software Testing. Veri-
fication and Validation, 2013.

[12] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on
the feasibility of cross-project defect prediction,” Automated Software
Engineering, vol. 19, no. 2, pp. 167–199, 2012.

[13] S. Herbold, “Training data selection for cross-project defect prediction,”
in Proceedings of the 9th International Conference on Predictive Models
in Software Engineering. ACM, 2013, p. 6.

[14] P. Singh and S. Verma, “Cross project software fault prediction at
design phase,” World Academy of Science, Engineering and Technology,
International Journal of Computer, Electrical, Automation, Control and
Information Engineering, vol. 9, no. 3, pp. 800–805, 2015.

[15] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-project defect
prediction models: L’union fait la force,” in 2014 Software Evolution
Week-IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering (CSMR-WCRE). IEEE, 2014, pp. 164–173.

[16] D. Ryu, J.-I. Jang, and J. Baik, “A transfer cost-sensitive boosting
approach for cross-project defect prediction,” Software Quality Journal,
vol. 25, no. 1, pp. 235–272, 2017.

[17] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan, “Studying just-in-time defect prediction using cross-
project models,” Empirical Software Engineering, vol. 21, no. 5, pp.
2072–2106, 2016.

[18] S. Zhong, T. M. Khoshgoftaar, and N. Seliya. Unsupervised Learning
for Expert-Based Software Quality Estimation. in HASE, 2004.

[19] P. S. Bishnu and V. Bhattacherjee, “Software fault prediction using
quad tree-based k-means clustering algorithm,” IEEE Transactions on
knowledge and data engineering, vol. 24, no. 6, pp. 1146–1150, 2012.

[20] M. Park and E. Hong, “Software fault prediction model using clustering
algorithms determining the number of clusters automatically,” Interna-
tional Journal of Software Engineering and Its Applications, vol. 8,
2014.

[21] G. Abaei, A. Selamat, and H. Fujita, “An empirical study based on semi-
supervised hybrid self-organizing map for software fault prediction,”
Knowledge-Based Systems, vol. 74, pp. 28–39, 2015.

[22] A. Boucher and M. Badri, Predicting Fault-Prone Classes in Object-
Oriented Software: An Adaptation of an Unsupervised Hybrid SOM
Algorithm. in 2017 IEEE International Conference on Software Quality.
Reliability and Security (QRS, 2017.

[23] R. Özakıncı and A. Tarhan, “Early software defect prediction: A
systematic map and review,” Journal of Systems and Software, vol. 144,
pp. 216–239, 2018.

[24] W. Zhang, S.-C. Cheung, Z. Chen, Y. Zhou, and B. Luo, “File-level
socio-technical congruence and its relationship with bug proneness in
oss projects,” Journal of Systems and Software, vol. 156, pp. 21–40,
2019.

[25] A. Okutan and O. T. Yıldız, “Software defect prediction using bayesian
networks,” Empirical Software Engineering., vol. 19, no. 1, p. 154–181,
Feb. 2014. [Online]. Available: https://doi.org/10.1007/s10664-012-
9218-8

[26] A. Okutan and O. Taner Yildiz, “A novel kernel to predict
software defectiveness,” Journal of Systems and Software,
vol. 119, pp. 109 – 121, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121216300759

[27] R. S. Wahono, “A systematic literature review of software defect
prediction: Research trends, datasets, methods and frameworks,” Journal
of Software Engineering, vol. 1, no. 1, pp. 1–16, 2015.

[28] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung,
“Effort-aware just-in-time defect prediction: simple unsupervised models
could be better than supervised models,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2016, pp. 157–168.

[29] Z. Li, X. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying, “On the
multiple sources and privacy preservation issues for heterogeneous
defect prediction,” IEEE Transactions on Software Engineering, vol. 45,
no. 4, pp. 391–411, April 2019.

[30] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project defect
prediction using a connectivity-based unsupervised classifier,” in Pro-
ceedings of the 38th International Conference on Software Engineering.
ACM, 2016, pp. 309–320.

[31] J. Han, J. Pei, and M. Kamber, “Data mining: concepts and techniques.”
Elsevier, 2011.

[32] C. Andersson and A. P. Runeson, “replicated quantitative analysis of
fault distributions in complex software systems,” IEEE Transactions on
Software Engineering, vol. 33, p. 5, 2007.

[33] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Transactions on Software
engineering, vol. 26, no. 8, pp. 797–814, 2000.

[34] M. Gittens, K. Yong, and D. Godwin, The vital few versus the trivial
many: examining the Pareto principle for software, vol. 29, 2005.

[35] T. G. Grbac, P. Runeson, and A. D. Huljenić, “second replicated
quantitative analysis of fault distributions in complex software systems,”
IEEE Transactions on Software Engineering, vol. 39, no. 4, pp. 462–476,
2013.

[36] M. Hamill and K. Goseva-Popstojanova, “Common trends in software
fault and failure data,” IEEE Transactions on Software Engineering,
vol. 35, no. 4, pp. 484–496, 2009.

[37] T. J. Ostrand and E. J. Weyuker, The distribution of faults in a large
industrial software system. in ACM SIGSOFT Software Engineering
Notes. ACM, 2002.

[38] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project defect
prediction using a connectivity-based unsupervised classifier,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE). IEEE, 2016, pp. 309–320.

[39] M. Yan, Y. Fang, D. Lo, X. Xia, and X. Zhang, “File-level defect
prediction: Unsupervised vs. supervised models,” in 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), Nov 2017, pp. 344–353.

[40] A. Agrawal and T. Menzies, “Is better data better than better data
miners?: on the benefits of tuning smote for defect prediction,” in Pro-
ceedings of the 40th International Conference on Software engineering.
ACM, 2018, pp. 1050–1061.

[41] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Mas-
sively compositional model for cross-project defect prediction,” IEEE
Transactions on software Engineering, vol. 42, no. 10, pp. 977–998,
2016.

[42] S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic literature
review and meta-analysis on cross project defect prediction,” IEEE
Transactions on Software Engineering, vol. 45, no. 2, pp. 111–147, 2017.

[43] W. Fu and T. Menzies, “Revisiting unsupervised learning for defect pre-
diction,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM, 2017, pp. 72–83.

[44] J. Sayyad Shirabad and T. Menzies, “The PROMISE Repository of
Software Engineering Databases.” School of Information Technology
and Engineering, University of Ottawa, Canada, 2005. [Online].
Available: http://promise.site.uottawa.ca/SERepository

[45] Z. Tóth, P. Gyimesi, and R. Ferenc, “A public bug database of github
projects and its application in bug prediction,” in International Confer-
ence on Computational Science and Its Applications. Springer, 2016,
pp. 625–638.

85

joanna
Typewritten Text
Preprint

[46] G. Robles, “Replicating msr: A study of the potential replicability of
papers published in the mining software repositories proceedings,” in
2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010). IEEE, 2010, pp. 171–180.

[47] R. Martin, “Oo design quality metrics,” An analysis of dependencies,
vol. 12, pp. 151–170, 1994.

[48] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on object-
oriented metrics. in software metrics symposium,” vol. 1999, 1999.

[49] J. Bansiya and A. C. G. Davis, “hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on software engineering,
vol. 28, no. 1, pp. 4–17, 2002.

[50] B. Henderson-Sellers, Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc., 1995.

[51] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[52] R. Ferenc, P. Gyimesi, G. Gyimesi, Z. Tóth, and T. Gyimóthy, “An auto-
matically created novel bug dataset and its validation in bug prediction,”
Journal of Systems and Software, p. 110691, 2020.

[53] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A semantic lstm model
for software defect prediction,” IEEE Access, vol. 7, pp. 83 812–83 824,
2019.

[54] R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Applied Soft Computing, vol. 27, pp. 504–518,
2015.

[55] N. Ohlsson and H. Alberg, “Predicting fault-prone software modules
in telephone switches,” IEEE Transactions on Software Engineering,
vol. 22, no. 12, pp. 886–894, 1996.

[56] N. Ohlsson, M. Helander, and C. Wohlin, “Quality improvement by
identification of fault-prone modules using software design metrics,” in
Proceedings: International Conference on Software Quality, 1996, pp.
1–13.

[57] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” SIGMOD Rec, vol. 29, no. 2,
pp. 427–438, 2000.

[58] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” vol. 29, no. 2, pp. 93–104, 2000.

[59] K. Zhang, M. Hutter, and A. H. Jin, “New local distance-based out-
lier detection approach for scattered real-world data,” in Advances in
Knowledge Discovery and Data Mining: 13th Pacific-Asia Conference.
s Springer Berlin Heidelberg: Berlin, Heidelberg. p. 813-822, 2009, pp.
27–30.

[60] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Loop: local
outlier probabilities,” in Proceedings of the 18th ACM conference on
Information and knowledge management. ACM, 2009, pp. 1649–1652.

[61] H.-P. Kriegel, “M,” in S. hubert, and A. Zimek, Angle-based outlier
detection in high-dimensional data, in Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining ACM: Las Vegas, Nevada, USA. p, 2008, pp. 444–452.

[62] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and D. Cok,
“Local vs. global models for effort estimation and defect prediction,” in
2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). IEEE, 2011, pp. 343–351.

[63] J. E. Gaffney, “Estimating the number of faults in code,” IEEE Trans-
actions on Software Engineering, no. 4, pp. 459–464, 1984.

[64] G. Koru, H. Liu, D. Zhang, and K. El Emam, “Testing the theory
of relative defect proneness for closed-source software,” Empirical
Software Engineering, vol. 15, no. 6, pp. 577–598, Dec 2010. [Online].
Available: https://doi.org/10.1007/s10664-010-9132-x

[65] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[66] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact
of classification techniques on the performance of defect prediction
models,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1. IEEE, 2015, pp. 789–800.

[67] A. Tosun, A. Bener, B. Turhan, and T. Menzies, “Practical
considerations in deploying statistical methods for defect prediction: A
case study within the turkish telecommunications industry,” Inf. Softw.
Technol., vol. 52, no. 11, p. 1242–1257, Nov. 2010. [Online]. Available:
https://doi.org/10.1016/j.infsof.2010.06.006

86

joanna
Typewritten Text
Preprint

