
An Empirical Study of Code Smells in
Transformer-based Code Generation Techniques

Mohammed Latif Siddiq∗, Shafayat H. Majumder†§, Maisha R. Mim†§, Sourov Jajodia†, Joanna C. S. Santos∗
∗Department of Computer Science and Engineering, University of Notre Dame, USA

†Department of Computer Science, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
msiddiq3@nd.edu, {1705080, 1705060, 1705072}@ugrad.cse.buet.ac.bd, joannacss@nd.edu

Abstract—Prior works have developed transformer-based lan-
guage learning models to automatically generate source code
for a task without compilation errors. The datasets used to
train these techniques include samples from open source projects
which may not be free of security flaws, code smells, and
violations of standard coding practices. Therefore, we investigate
to what extent code smells are present in the datasets of coding
generation techniques and verify whether they leak into the
output of these techniques. To conduct this study, we used Pylint
and Bandit to detect code smells and security smells in three
widely used training sets (CodeXGlue, APPS, and Code Clippy).
We observed that Pylint caught 264 code smell types, whereas
Bandit located 44 security smell types in these three datasets
used for training code generation techniques. By analyzing the
output from ten different configurations of the open-source fine-
tuned transformer-based GPT-Neo 125M parameters model, we
observed that this model leaked the smells and non-standard
practices to the generated source code. When analyzing GitHub
Copilot’s suggestions, a closed source code generation tool, we
observed that it contained 18 types of code smells, including
substandard coding patterns and 2 security smell types.

Index Terms—code generation, code smell, security smell, trans-
former, pre-trained model, GitHub copilot

I. INTRODUCTION

Code generation techniques aim to automatically generate
functional code based on prompts [1]. These prompts can
include textual descriptions (comments), code (e.g., function
signatures, expressions, variable names, etc.), or a combination
of these (i.e., free text and code). As a result, developers can
write an initial code and/or comment and rely on these tools
to generate the remaining code, which saves them time and
helps to speed up the software development process.

Recently, there has been an uptick of machine-learning-based
techniques that uses Natural Language Processing (NLP) tech-
niques trained with a large amount of code snippets (instead of
plain text) to generate code from user prompts [2]. These Large
Language Learning Models (LLMs) are trained with a large
dataset of source code snippets and fine-tuned for a wide range
of software engineering applications, such as automated code
completion [3]–[5], summarization [6], documentation [7], and
generation [8], [9]. LLMs are mainly based on an attention-
based transformer model [10] with different parameters to
catch the context of natural language.

§These authors equally contributed to this work.

Although a good code generation tool can help programmers
in reducing development efforts [11], the code snippets used
to train these techniques are typically taken from open-source
repositories. These code samples used for training may not
have been adequately vetted in terms of following coding
standards, implementing proper design decisions, and using
secure (defensive) coding practices [12], [13]. Therefore, these
datasets may contain code smells that may affect the quality
of the code generated by these techniques [14].

Code smells are symptoms that may indicate the system has
flaws [15]. For example, a class with an unusually long method
may indicate poor design choices. Although code smells may
not directly affect the software’s functionality, they can intro-
duce long-term maintainability issues and technical debt [13].
They can also compromise the system’s security [16]. This
subset of smells, commonly referred to as security smells, is
not necessarily an actual vulnerability, but it can open the door
for developers to make mistakes that lead to security flaws that
are exploitable by attackers [17], [18].

Although prior research has studied the presence of code
smells in machine learning [19] and data science projects [20]
(i.e., in the actual code that implements the models), they have
not studied the training set and the output of these projects.
Moreover, prior research focused on verifying whether the
generated code is functionally correct (i.e., it implements what
the user expected) [2], [11], [21] but not the quality of the
generated code. More recent research investigated whether
GitHub Copilot (a closed source code generation tool) can
generate vulnerable code [22] or whether it is as bad as humans
in generating insecure code [23]. However, we currently lack
an in-depth understanding of the quality of training datasets
and whether code smells can potentially leak into the code
generated by these models.

Therefore, we conduct a large-scale empirical study of code
smells in the training sets of transformer-based code gen-
eration models for Python and investigate the leakage of
these harmful patterns to the output. To conduct this study,
we retrieved three open-source datasets (CodeXGlue [24],
APPS [25], and Code Clippy [26]) commonly used for train-
ing Python code generation techniques and verified to what
extent they contain code smells. Furthermore, we investigated
whether the code generated by transformer-based models can

contain code smells. For this investigation, we computed the
code smells in the outputs generated by GPT-Code-Clippy [27]
and GitHub Copilot [28], an open-source and closed-source
code generation tool, respectively. Our scripts used in this
research are publicly available in our repository: https://github.
com/s2e-lab/Code-Smell-Code-Generation.

The contributions of this paper are: (i) a large-scale empirical
study of code smell occurrence in the dataset and the out-
put of transformer-based Python code generation techniques,
(ii) an investigation of how transformer-based open-source
techniques can differ from closed-source ones, and (iii) a
discussion of the implications of the findings for researchers
and practitioners.

II. BACKGROUND

A. Code Smell

A code smell (“bad code smell” or “smell”) is an indicator
of an improper choice of system design and implementation
strategy [15], [29]. These smells have been linked to signs
of software maintainability issues. They also violate basic
software design principles, which harm the product’s future
efficiency. These flaws can stifle software development or raise
the chance of future errors or failures [30]. A code smell is
a broader term that includes security issues, design decision
issues, and coding standard violations. An example of a smell
is using the wrong exception catching order, as shown in the
code snippet below. The TypeError block is never reached,
as the Exception block will catch all exceptions.

1 try:
2 age = int(input())
3 except Exception:
4 raise
5 except TypeError:
6 raise

In our work, we distinguish code smells into security smells
and non-security-related smells. We make these distinctions
because security smells can be more dangerous and problem-
atic than non-security-related smells, as they can introduce
vulnerabilities in code.

Security code smells (or simply “security smells”) are a subset
of code smells. They are code patterns frequently that may
lead to security flaws [17], [18]. Although security smells
may not be a vulnerability per se, they are symptoms that
signal the prospect of a vulnerability [16]. In our scope,
we are considering the security code smells that map to
the Common Weakness Enumeration (CWE), which is a
community-developed list of software and hardware security
weakness [31]. For example, the following code snippet con-
tains a security smell mapped to the CWE-798: Use of Hard-
coded Credentials:
1 def verifyAdmin(password):
2 if password != "passw0rd!":
3 return False
4 return True

This code snippet checks the password with respect to a
hard-coded string (i.e., passw0rd!). Although this code is
functionally correct, anyone can bypass the authentication
mechanism by guessing this fixed password. This can be
achieved by, for example, reverse engineering the code to find
the hard-coded password from the program’s symbols table.
Many instances of this security smell lead to authentication by-
pass in real software systems. One instance is the CVE-2010-
2073 [32] in which the FTP server library (pyftpd/0.8.4.6)
used hard-coded usernames and passwords for three default
accounts (“test”, “user”, and “roxon”). It allowed remote
attackers to read arbitrary files from the FTP server.

Non-security smells do not have a direct security implications.
It is mainly related to potential errors such as using undefined
variables and function redefining and standard coding practice
violations. The standard coding practice encompasses a set
of rules that developers need to follow for better code in
terms of maintainability and readability. Different languages
adopt specific coding practice protocols. For example, PEP-
8 [33] is the de facto coding practice standard for Python. It
provides an extensive guide for code layout, whitespace usage,
naming conventions, etc.For example, according to the guide,
the coding layout should have 4 spaces per indentation level,
and spaces are the preferred indentation method.

B. Transformer-based Code Generation

Due to machine learning and natural language processing
advancements, language learning models provide effectiveness
in translation, question answering, and summarization. Similar
techniques can be used for source code understanding and its
related task. Source code generation from natural language
is a Sequence-to-Sequence (seq2seq) learning problem. Previ-
ously, practitioners used the Recurrent Neural Network (RNN)
to model the seq2seq problem, and with Long Short-Term
Memory (LSTM) based neural network [34], it got significant
improvement. Later, attention-based transformer [10] changed
the area of language learning. The transformer is an encoder-
decoder architecture-based deep learning model that uses
the self-attention mechanism for differentially weighting the
significance of each part of the input data [10]. The trans-
former architecture is what powers several popular language
models such as BERT (Bidirectional Encoder Representations
from Transformers) [35] and GPT-3 (Generative Pre-trained
Transformer) [36]. These language learning models can be
fine-tuned with source code-related datasets for code gen-
eration, understanding, and summarization. CodeBERT [37]
and CodeT5 [38] are example of this type model. GitHub
Copilot is a deep learning-based tool developed by GitHub
and OpenAI [39] to help programmers write code, comments,
test cases, documentation and translate source code from one
programming language to another. The OpenAI Codex [2],
an artificial intelligence model produced by OpenAI, powers
GitHub Copilot. The OpenAI Codex is a modified, production-
ready version of the GPT-3 model [36] that could generate text
that resembles human language.

III. RESEARCH QUESTIONS

We aim to answer the following research questions:

RQ1: Are code smells present in the code generation
training datasets?

We use two static analyzers (Bandit [40] and Pylint [41]) to
detect smells in the samples of three training datasets used for
Python code generation. We use Pylint to detect non-security
code smells (e.g., code convention violations) and Bandit to
detect security smells that are mapped to a CWE ID.

RQ2: Does the output of an open-source transformer-based
code generation technique contain code smells?

We evaluate the output from the different configurations of an
open-source code generation model (GPT-Code-Clippy [27])
with Bandit and Pylint. We focus on having a qualitative result
from the analyzers, and their correlation with learning harmful
patterns related to code smells, especially security smells that
have already been present in the training set.

RQ3: Is there any code smell in the output of closed source
code generation tools based on a large language model?

In RQ1 and RQ2, we studied the training sets and the output of
open source code generation techniques. This question focuses
on the quality of the code generated by closed source tools
(i.e., systems in which their datasets, model, or trained weights
are publicly unavailable). We aim to investigate whether
proprietary systems may include quality/sanity checks in the
output of their models and how they could differ from open-
source ones. To answer this question, we analyze the code
generated by GitHub Copilot. We use Bandit and Pylint to
gather a quantitative result, running on the output from a
commonly used dataset (HumanEval [2]).

IV. METHODOLOGY

Figure 1 shows an overview of the steps we performed in our
study to answer each research question. We detail these steps
in the following subsections.

CodeSearchNet
(CodeXGlue) APPSCode

Clippy

evaluation

HumanEval
164 prompts

output

training

117,232
samples

139,655
samples

251,820
samples

Code
Smells

Security
Smells

prompt +
generated code

16,400
samples

Manual
Validation

prompts

output

GPT-Code-Clippy
10 Configurations

656
samples

prompt + generated code +
top 3 recommendations

Fig. 1. Overview of our empirical study

A. RQ1: Code Smells in Training Datasets

In RQ1, we investigate the presence of code smells in the
training sets of transformer-based code generation techniques.
We used three datasets for our analysis: CodeXGlue [24]
(which is a filtered version of the CodeSearchNet corpus
[42]), the Automated Programming Progress Standard (APPS)
[25], and Code Clippy [26]. We chose these datasets because
they were used to train the GPT-Code-Clippy (GPT-CC) [27]
model, which we use to answer our RQ2 (Section IV-B).
Moreover, these datasets are used not only for code generation
but also for model evaluation and code summarization [2],
[24]. It is important to highlight that we use CodeXGlue [24]
instead of CodeSearchNet corpus [42] because it contains
code snippets that (i) could be successfully parsed into an
abstract syntax tree, (ii) its corresponding natural language
code document does not contain special tokens, (iii) have at
least three and less than 256 tokens, and (iv) is written in
English. That is, we chose CodeXGlue [24] because it is a
noise-free version of the CodeSearchNet corpus [42].

To answer our RQ1, we first extracted Python code samples
from these training datasets as follows:

• The APPS [25] training set contains 5,000 programming
competition and interview problems with problem state-
ments, sample inputs, and different solutions for each prob-
lem written in Python. We parsed each solution into a
different Python file, obtaining a total of 117,232 samples.

• The CodeXGlue [24] contains around 6 million functions
written in six different programming languages (Go, Java,
JavaScript, PHP, Python, and Ruby). Their Python dataset
is available in JSONL (JavaScript Object Notation Lines)
format. Each line in the dataset is a JSON object containing
a code snippet and a docstring with related metadata, such
as the snippet’s programming language, source repository,
code tokens, and docstring. We parsed each JSON object
and dumped them into individual Python files. In total, we
have 251,820 Python files from this dataset.

• Code Clippy is a dataset created selecting GitHub reposito-
ries based on a set of criteria (e.g., repository has at least 10
GitHub stars) [26] and then combined the GitHub portion
from the Pile dataset [43]. After combining, duplicates were
removed from the dataset. It includes samples from different
programming languages. This dataset is provided in JSONL
format. We used 139,655 Python samples from this dataset.

After collecting these Python code snippets, we run two
static analyzers on them (Pylint [41] and Bandit [40]) with
their default configuration. In the case of Pylint, we exclude
whitespaces, docstrings, and import-related messages from
our analysis (as explained in Section IV-D). Finally, we
computed the following metrics:

• Number of smells per sample: We calculated how many
messages Pylint generated per sample.

• Top-5 message types: We considered Pylint’s messages in
four categories: Error, Convention, Warning, and Refactor.
We accumulated the weighted total number of instances
found in each dataset for every type of code smell and
ranked the top five in each category. This rank would help
to understand the distribution of typical code smell present
in the code generation dataset. The weighted total number
of instances means the number of instances is divided by
the total sample of the dataset.

• Number of “smelly” samples: We calculated the number of
samples that contained a code smell (“smelly sample”). This
metric could help determine the percentage of the dataset
responsible for the overall code smell in the dataset.

• Number of security smells per sample: It indicates the
number of security smells that Bandit could find in each
sample. This metric is used to understand the quality of
datasets based on the security smell.

• Top 3 security smells found for each dataset and their
mapping to a CWE ID.

B. RQ2: Code Smells in the Generated Code

In this research question, we investigate whether there can
be a leakage of code smells from training datasets into the
generated code (i.e., model’s output). For this purpose, we
gathered the code generated (i.e., output) by the GPT-Code-
Clippy (GPT-CC) [27]. The GPT-CC is a community attempt
to produce an open-source version of GitHub Copilot.

The GPT-CC model was trained and fine-tuned using the
CodeSearchNet [42], APPS [25] and Code Clippy [26]
datasets. It was previously evaluated using the HumanEval
dataset [2], which contains 164 prompts (i.e., a partial code
snippet containing a function’s name, parameter list, and a
comment describing the function’s intended functionality). The
GPT-CC provided ten outputs for each prompt (i.e., 1,640
outputs per configuration). Since there are 10 different con-
figurations, we have a total of 16,400 output samples.

After collecting the output samples, we combined the original
prompt in the HumanEval dataset and the model’s output and
dumped them into individual Python files. Then, we run Pylint
and Bandit on these files. Finally, we calculated the number
of smells per sample from the Pylint result and the number
of security smell per sample from the Bandit result. We also
calculated the top three messages found in each category in
the following way: for a specific type of message, we check
the presence of the type in each configuration. For example, if
Warning-A is present in nine configurations, whereas Warning-
B is in eight configurations, then Warning-A has the higher
rank. If there was a tie, we ranked the message with the
accumulated number of instances in all configurations. In
addition to that, we also calculated the percentage of samples
containing code smell. For Bandit, the types of security
smells are limited. Hence, we did not rank them; instead, we
presented them all in our results (Section V-B).

C. RQ3: Code Smells in GitHub Copilot

We aim to understand the quality of a closed-source code gen-
eration model. For this purpose, we used GitHub Copilot [28]
as an example of a closed-source code transformer-based code
generation technique. We used their VS Code extension to
obtain suggestions by giving the same 164 prompts from the
HumanEval dataset we used in RQ2.

GitHub Copilot gave one suggestion in the text editor and
generated ten additional suggestions. We collected the top
three suggestions from the additional generated solutions for
the 164 prompts. GitHub Copilot sometimes generates du-
plicate suggestions and hides them from the output. If the
total additional suggestions are less than three, we treated
the last suggestion as multiple suggestions. By following this
procedure, we collected a total of 656 samples from GitHub
Copilot, which was later analyzed by Pylint [41] and Bandit
[40] to check the presence of code smells.

Finally, we calculated the number of smells and security smells
per sample. However, in this case, we did not rank the smell
found by Pylint and Bandit, as the types of code smell found
by analyzers are limited.

D. Code Smell Analyzers (Pylint and Bandit)

Pylint [41] is a static code analyzer for Python 2 and 3 that
may display various messages in the following categories:
fatal (when Pylint is unable to process the file), error (code
smells that may lead to runtime errors), warning (Python-
specific smells), convention (coding standard violations), and
refactor (code smells that can be fixed through refactoring).
We used Pylint 2.13.8, and we ignored these messages related
to style issues about whitespace, newline, and invalid name:
C0303-trailing-whitespace, C0304-missing-final-newline,
C0305-trailing-newlines, and C0103-invalid-name. We also
ignored these messages related to missing docstring as it is
expected that samples in code generation datasets do not have
a docstring: C0112-empty-docstring, C0114-missing-module-
docstring, C0115-missing-class-docstring, and C0116-
missing-function-docstring. Moreover, these import related
messages are also ignored because Pylint can not do a reliable
checking for import statements’ usage [19]: W0611-unused-
import, W0401-wildcard-import, R0402-consider-using-from-
import, C2403-non-ascii-module-import, W0404-reimported,
W0614-unused-wildcard-import, C0410-multiple-imports,
C0411-wrong-import-order, C0412-ungrouped-imports,
C0413-wrong-import-position, C0414-useless-import-alias,
C0415-import-outside-toplevel, and E0401-import-error. We
also omitted fatal error messages.

We used Bandit 1.7.4 [40] to statistically analyze samples for
finding security smells. Bandit accomplishes this by process-
ing each file, creating an Abstract Syntax Tree (AST), and
applying suitable plugins to the AST nodes. Each detected
security smell maps to a CWE ID.

E. Validation of the Analyzers

Static analyzers are known for including false positives in
their results; for a dynamic language like Python, statically
detecting smells can be difficult [44]. Therefore, we manually
validated the output of Pylint and Bandit. These tools analyzed
a total of 525,763 Python files, in which 508,707 of them are
from the three training sets, 16,400 are from GPT-CC’s output,
and 656 samples are from GitHub Copilot’s output.

Since it would be humanly unfeasible to manually verify over
half a million Python files, to do our validation, we selected
a statistically significant sample of 384 outputs from Pylint
and 380 outputs from Bandit (confidence level = 95%, margin
of error = 5%). The validated smells include issues detected
in samples from the training sets and the open-source and
closed-source models’ output. We selected this subset to be
proportional to the ratio of samples to the total population.
Hence, we took 64 samples from APPS, 257 samples from
CodeXGlue, 57 samples from Code Clippy, 5 samples from
the output of GPT-CC, and 1 sample from the output of
GitHub Copilot to validate Pylint. To validate Bandit, we took
25 samples from APPS, 166 samples from CodeXGlue, 186
samples from Code Clippy, 2 samples from GPT-CC’s output,
and 1 sample from GitHub Copilot’s output.

After extracting these samples, we investigated whether the
detected code smells were true positives. For Bandit, specif-
ically, we checked the samples in terms of the possibility of
exploitation of the security smell. The sample could be marked
for different code smells, but in our validation, we focused on
the smell for which it was detected by the tool.

We observed that Pylint correctly identified code issues for all
the samples (i.e., 100% precision). Our manual investigation
of Bandit showed that 345 out of 380 samples were correct
(i.e., 90.79% precision). Therefore, this manual validation
gave us confidence that our collected results are enough to
allow an accurate analysis of code smells in transformer-based
code generation techniques.

V. RESULTS

A. RQ1: Code Smells in Training Sets

Table I presents the number of detected smell instances per
type that were detected by Pylint, namely error, convention,
refactor and warning smells. It also presents the total smell
instances found per dataset, the number of samples containing
smells (i.e., “smelly samples”), and the average number of
smell messages per sample. We observed that CodeXGlue was
the dataset that contained the highest amount of “smelly” sam-
ples – Pylint detected smells in 97% of its samples. In the case
of APPS and Code Clippy, the percentage of smelly samples
was about 69% and 39%, respectively. Moreover, we found
that the APPS [25] dataset has the lowest average number of
smells per sample compared to the other datasets.

Table II shows the top five messages from each category found
by Pylint. The last column represents the sum of the weighted

TABLE I
RESULT FROM PYLINT ON THE TRAINING SETS

Dataset # Error
Instances

Convention
Instances

Refactor
Instances

Warning
Instances

Total Smell
Instances

Smelly
Samples

Avg. # Smells
per Sample

APPS 61,294 74,341 106,478 278,041 520,154 81,068
(69.15%) 4.44

Code Clippy 273,852 66,976 103,114 76,212 3,386,765 54,641
(39.12%) 24.25

CodeXGlue 17,162 268,497 185,204 49,285 2,791,951 244,338
(97.03%) 11.09

TABLE II
TOP-5 CODE SMELLS DETECTED BY PYLINT ON THE TRAINING SETS

Message Type Message ID Message Weighted Score

Error

E0602 undefined-variable 9.813
E0402 relative-beyond-top-level 0.189
E1101 no-member 0.099
E0611 no-name-in-module 0.029
E1120 no-value-for-parameter 0.009

Convention

C0301 line-too-long 3.865
C0209 consider-using-f-string 1.030
C0321 multiple-statements 0.151
C0200 consider-using-enumerate 0.097
C0325 superfluous-parens 0.092

Refactor

R0903 too-few-public-methods 0.299
R1705 no-else-return 0.255
R0913 too-many-arguments 0.188
R0914 too-many-locals 0.129
R1725 super-with-arguments 0.102

Warning

W0311 bad-indentation 8.337
W0104 pointless-statement 7.391
W0212 protected-access 0.953
W0613 unused-argument 0.339
W0105 pointless-string-statement 0.328

total number of instances found in each dataset for every type
of code smell, as explained in Section IV-A.

TABLE III
RESULT FROM BANDIT ON TRAINING SETS

Datasets Syntax Error # Security
Smell Type

Total Smell
Instances

Security
“Smelly” Samples

Avg. # Sec. Smell
Per Samples

APPS 5,294 (4.51%) 15 2,533 1,903(1.62%) 0.0216
Code Clippy 74,192 (53.08%) 64 87,766 14,353(10.27%) 0.6284
CodeXGlue 2,123 (0.84%) 53 18,599 12,672(5.32%) 0.0739

Our results from Bandit show that the Code Clippy dataset
[26] has the highest number of types and total security smells
than other datasets. The number of security smell per sample is
lower in APPS [25] than in the other two datasets. The top five
security smells for these three datasets are B101: assert used in
the code, B110: in try-except, using pass, without handling
the exception, B311: blacklisted functions for random num-
ber generation, B603: subprocess without shell equals true,
B307: blacklisted function for using eval. The first two
are related to CWE-703 (Improper Check or Handling of
Exceptional Conditions). The third one is related to CWE-330
(Use of Insufficiently Random Values). The last two maps to
CWE-78 (Improper Neutralization of Special Elements used
in an OS Command). Table III summarizes the total types of
security smells found (2nd column), the number of security
smells detected (3rd column), the number of samples contain-
ing security smells (4th column), and the average number of
security smells per sample (5th column). The first column in
Table III also includes the number of samples which Bandit

TABLE IV
TOP-3 SECURITY SMELLS DETECTED BY BANDIT ON THE TRAINING SET

Dataset Message CWE Total

APPS
B307-blacklist(eval) CWE-78: OS Command Injection 1,229 (48.52%)
B110-try except pass CWE-703: Improper Checking or Handling of Exceptional Conditions 591 (23.33%)

B101-assert used CWE-703: Improper Handling of Exceptional Conditions 329 (12.99%)

Code Clippy
B101-assert used CWE-703: Improper Checking or Handling of Exceptional Conditions 66,247 (75.48%)

B311-blacklist(random) CWE-330: Use of Insufficiently Random Values 4,280 (4.88%)
B603-subprocess without shell equals true CWE-78: OS Command Injection 1,594 (1.81%)

CodeXGlue
B101-assert used CWE-703: Improper Checking or Handling of Exceptional Conditions 10,484 (56.37%)

B603-subprocess without shell equals true CWE-78: OS Command Injection 1,389 (7.47%)
B110-try except pass CWE-703: Improper Checking or Handling of Exceptional Conditions 1,233 (6.63%)

could not analyze due to a syntax error. It can be observed
that about half of Code Clippy [26] can not be parsed due
to syntax errors. Our observation is that though the sample
files have a “.py” extension, they do not contain Python code;
instead, they contain Markdown (.md) or Interactive Python
Notebook (.ipynb) code.

Table IV presents the top three security smells found in each
dataset and their mapping to a CWE entry. The last column of
the table indicates the number of instances of this type of smell
overall, and the percentage indicates the contribution of this
smell to the total number of security smells in this particular
dataset. For example, there are 2,533 security smell instances
found in the APPS [25] dataset, in which 48.52% of them are
instances of B307-blacklist(eval).

From Table I and III, we observe that 69.15% samples
contributed to producing non-security code smells, whereas
1.62% samples contributed to security smell in APPS [25]
dataset. Though the Code Clippy dataset [26] has the highest
non-security and security smells per sample, we found that
39.12% and 10.27% of samples are contributing to code smells
and security smells, respectively. In the CodeXGlue [24]
dataset, almost every sample has non-security-related code
smells identified by Pylint (97% smelly samples), whereas
Bandit identified that 5.32% of its samples contain security
smells. Among these training sets, APPS [25] has a lower
non-security code smell and security smell per sample.

Comparison to prior study: A prior study [19] identified the
top 10 code smells found in machine learning projects. Out
of these 10, we considered 5 in our project (as explained
in Section IV-D). W0311: bad-indentation is the top warning
message, and C0301: line-too-long is the top convention smell
found in our study and in [19]. E1101: no-member is the
top error-related smell found in this prior study [19] and
the third in our study. Though R0801: duplicate-code and
W0621: redefined-outer-name are in the top 10 code smells
in their study [19], we found that they are present in the code
generation dataset but not as frequent.

RQ1 Findings: We found a total of 264 different types of
non-security smells detected by Pylint for three commonly
used datasets. “Undefined variables”, “line too long”, “too
few public methods”, and “bad indentation” were the four

most common non-security-related code smell identified
across these datasets. We also found that a reoccurring
security smell in the training sets is an Improper Check or
Handling of Exceptional Conditions (CWE-703). Finally,
the APPS [25] dataset was the one that had the lowest
average number of smells per sample (both non-security
related and security smells).

B. RQ2: Code Smells in Generated Code

We run Pylint and Bandit on the output of HumanEval [2]
dataset from ten different configurations of the Fine-Tuned
GPT-Neo 125M Parameters Model [27]. Table V provides
the total type of non-security code smells found by Pylint.
A configuration that has a name with “code-clippy” in it
without “dedup” means that the model was fine-tuned with
Code Clippy [26] dataset with duplication. A configuration
name “code-clippy” with “dedup” means no duplication. The
label “code-search-all” means that the model was fine-tuned
with the full CodeSearchNet [42] dataset, whereas the label
“code-search-py” indicates a fine-tuning with only the Python
training set. The numbers 1024 and 2048 at the end of the
configuration name indicate the sequence size, and 2048bs
means that the batch size is equals to 2048. One configuration
was fine-tuned with APPS [25] dataset. The base model
configuration means that the model was not fine-tuned with
an external dataset like APPS [25].

Table VI shows the top-3 messages provided by Pylint after
running it on the output of the ten different configurations
of GPT-Neo 125M models based on the presence in the
different configurations, as explained in Section IV-B. We
found that undefined variables is a persistent smell in the
output. Most model configurations generate lines of more than
100 characters, which is one of the typical code convention
violation messages. The model generates duplicated code, and
Pylint suggests refactoring it. An unused argument message is
a common warning from Pylint for the model’s output.

We run Bandit to find the security-related smell in the output
from different configurations of fine-tuned GPT-Neo 125M
model. We found that some models are not generating syntac-
tically correct codes due to the model’s performance. Table VII
presents the type, the total number of security smells detected
by Bandit, and the average number of security smells per
sample. Bandit finds six security smell types in the output from

TABLE V
RESULT FROM PYLINT ON THE OUTPUT FROM DIFFERENT CONFIGURATIONS OF FINE-TUNED GPT-NEO 125M PARAMETERS

Configuration # Error
Instances

Convention
Instances

Refactor
Instances

Warning
Instances

Total Smell
Instances

Smelly
Samples

Avg. # Smells
per Sample

code-clippy-code-search-all 89 74 64 173 400 156 (9.51%) 0.244
code-clippy-code-search-py 136 73 61 166 436 159 (9.70%) 0.266
code-clippy-dedup-1024 237 109 60 489 895 319 (19.45%) 0.546
code-clippy-dedup-2048 184 21 0 225 430 71 (4.33%) 0.262
Base Model 288 108 83 356 835 292 (17.80%) 0.509
code-clippy-dedup-2048bs 281 132 81 444 938 314 (19.15%) 0.572
APPS 201 110 108 557 976 274 (16.70%) 0.595
code-search-all 1286 558 351 792 2987 1102 (67.20%) 1.821
code-clippy 57 150 6 635 848 469 (28.60%) 0.517
code-search-py 1322 561 492 696 3071 1132 (69.02%) 1.873

TABLE VI
TOP-3 MESSAGES FROM PYLINT ON THE OUTPUT FROM DIFFERENT
CONFIGURATIONS OF FINE-TUNED GPT-NEO 125M PARAMETERS

Message Type Message Id Message # of Presence

Error
E0602 Undefined-variable 10
E1101 No-member 9
E0601 Used-before-assignment 9

Convention
C0301 Line-too-long 10
C0325 Superfluous-parenthesis 9
C0200 Consider-using-enumerate 8

Refactor
R0801 Duplicate-code 9
R1705 No-else-return 8
R1710 Inconsistent-return-statements 8

Warning
W0613 Unused-argument 10
W0104 Pointless-statement 10
W0105 Pointless-string-statement 10

GPT-Neo: (i) B101-Assert used, (ii) B311-blacklist(random),
(iii) B324-Hashlib, (iv) B112-try-except continue, (v) B307-
blacklist(eval), and (vi) B110-try-except pass.

TABLE VII
RESULT FROM BANDIT ON THE OUTPUT FROM DIFFERENT

CONFIGURATIONS OF FINE-TUNED GPT-NEO 125M PARAMETERS

Configuration Syntax Error # Security
Smell Type

Total
Per Smell Instance

Security
Smell Samples

Security Smell
Per Samples

code-clippy-code-search-all 660(40.24%) 1 10 3(0.18%) 0.006
code-clippy-code-search-py 656(40.00%) 1 10 5(0.30%) 0.006
code-clippy-dedup-1024 1286(78.41%) 1 11 6(0.37%) 0.007
code-clippy-dedup-2048 1568(95.61%) 1 5 3(0.18%) 0.003
Base Model 1314(82.13%) 1 9 6(0.37%) 0.005
code-clippy-dedup-2048bs 1286(78.41%) 2 21 11(0.67%) 0.013
APPS 1341(81,77%) 2 2 2(0.12%) 0.001
code-search-all 264(16.09%) 6 73 40(2.43%) 0.045
code-clippy 1167(71.16%) 0 0 0(0.00%) 0
code-search-py 260(15.85%) 4 43 27(1.64%) 0.026

RQ2 Findings: Code smells are present in the output of the
fine-tuned GPT-Neo model’s output. Undefined variables,
lines too long, Duplicate code, and Unused argument are
the top non-security smells in the training set and the
model’s output. Security smells, for example, using assert,
are common in the generated suggestions.

C. RQ3: Code Smells in GitHub Copilot’s Suggestions

We run Pylint [41], and Bandit [40] on the suggestions
given in the IDE and on the top three suggestions from
the ten suggestions generated by GitHub Copilot. Table VIII
summarizes the total type of error, convention, refactor, and
warning messages generated by Pylint. Table IX lists all non-
security smell types detected by Pylint. The undefined variable

is the only smell error found by Pylint in the GitHub Copilot’s
suggestions. We found 3 types of convention smells, 6 types of
refactoring, and 7 types of warning smell from Pylint.

TABLE VIII
RESULT FROM PYLINT ON HUMANEVAL DATASET OUTPUT FROM

GITHUB COPILOT

Suggestions # Error
Instance

Convention
Instances

Refactor
Instances

Warning
Instances

Total
Smell Instances

Smelly
Samples

Smells
Per Sample

Top 12 57 18 22 109 76(46.31%) 0.664
First 9 55 29 23 116 84(51.22%) 0.707
Second 10 55 36 14 115 80(48.78%) 0.701
Third 8 51 31 11 101 75(45.73%) 0.616

TABLE IX
MESSAGES LIST FROM PYLINT ON HUMANEVAL DATASET OUTPUT FROM

GITHUB COPILOT

Message Type Message Id Message
Error E0602 Undefined-variable

Convention
C0200 consider-using-enumerate
C0301 line-too-long
C0123 unidiomatic-typecheck

Refactor

R1710 inconsistent-return-statements
R1705 no-else-return
R1719 simplifiable-if-expression
R1703 simplifiable-if-statement
R1716 chained-comparison
R1718 consider-using-set-comprehension

Warning

W0612 unused-variable
W0108 unnecessary-lambda
W0107 unnecessary-pass
W0127 self-assigning-variable
W0311 bad-indentation
W0105 pointless-string-statement
W0622 redefined-builtin

We found two types of security smells in the outputs generated
by GitHub Copilot: B101-Assert Used and B303-Blacklist
(Use of insecure MD2, MD4, MD5, or SHA1 hash function).
Table X presents the security smells detected in GitHub
Copilot’s generated code.

RQ3 Findings: GitHub Copilot provides executable sug-
gestions, but they contain substandard coding and security
smells. Undefined variables, long lines, inconsistent return
statements, and unused variables are common code smells
in different categories. GitHub Copilot’s suggestions for the

TABLE X
RESULT FROM BANDIT ON HUMANEVAL DATASET OUTPUT FROM

GITHUB COPILOT

Suggestions Syntax Error # Security
Smell Type

Total
Smell Instance

Security
Smell Samples

Security Smell
Per Samples

Top 3(1.83%) 2 3 2(1.22%) 0.018
First 3(1.83%) 1 1 1(0.61%) 0.006
Second 6(3.66%) 1 1 1(0.61%) 0.006
Third 5(3.05%) 2 2 2(1.22%) 0.012

HumanEval dataset contain security smells, such as using
assert and weak hash functions.

VI. DISCUSSION AND IMPLICATIONS

This section first discusses the common non-security, and
security code smells found in training sets and output for
code generation tasks by Pylint. Subsequently, we discuss the
implication of our findings.

A. Common (Non-Security) Code Smells

• Undefined variables: Most datasets are taken from open-
source projects and may be part of complex projects. Taking
a function or class from an arbitrary project location may
miss important context; they may depend on the other
part of the code base or external library. For example, the
following partial code sample is taken from the CodeXGlue
[24] Python training set with slight modification where
pexpect on line 11 is not defined within the context. This
smell is also found in the synthesized output of the GPT-
Code-Clippy [27] model and GitHub Copilot [28].
1 def disconnect(self, driver):
2 """Disconnect from the console."""
3 self.log("TELNETCONSOLE disconnect")
4 try:
5 while self.device.mode != 'global':
6 self.device.send('exit',\
7 timeout=10)
8 except OSError:
9 self.log("TELNETCONSOLE already\

10 disconnected")
11 except pexpect.TIMEOUT:
12 self.log("TELNETCONSOLE unable to\
13 get the root prompt")
14 ...

• Not using enumerate: Instead of using enumerate, de-
velopers use the range function, passing to it the result of
the len function from built-in Python data structures. Using
enumerate is very helpful to get the index and value at
the same time and good practice to use in the code instead
of accessing len and getting the value with index received
by iterating with range. The following example is taken
from the output of GitHub Copilot on a sample from the
HumanEval dataset [2]. In lines 8 and 9, enumerate could
be used and number[i] and number[j] at line number
10 could be available earlier if enumerate is used.
1 from typing import List
2 def has_close_elements(numbers: List[float],
3 threshold: float) -> bool:
4 """ Check if in given list of numbers,
5 are any two numbers closer to each other
6 than given threshold.
7 """
8 for i in range(len(numbers)):

9 for j in range(i + 1, len(numbers)):
10 if abs(numbers[i] - numbers[j])\
11 < threshold:
12 return True
13 return False

• Inconsistent return statements: If a return statement re-
turns an expression, all return statements that return no
value should explicitly return None, and an explicit return
statement should be present at the end of the function,
according to PEP8 [33] (if reachable). This refactoring
message is found in the training set, the output of the fine-
tuned model, and GitHub Copilot’s synthesized output. The
following function is taken from the APPS dataset [25]. At
the end of the function, there should be a return statement
in case the if condition at line number 13 is false. This
function will implicitly return None, which may not be an
expected output for this function. This problem is present in
the training dataset and output of the fine-tuned model and
GitHub Copilot.

1 def solution(string, ending):
2 if ending == "":
3 return True
4 sum = 0
5 if len(string) < len(ending):
6 return False
7

8 for i in range(1,len(ending)+1):
9 if string[-i] == ending[-i]:

10 sum += 1
11 else:
12 return False
13 if sum == len(ending):
14 return True

B. Frequent Security Code Smells

From Section V, we observe that security code smells are
frequent in the training set and output of the code generation
model. In this section, we discuss three frequently occurred
security code smells identified by Bandit:

• Using Assert: Using assert in the production code is a
bad practice; it can be replaced with proper try-except
handling. This security smell is related to CWE-703 (Im-
proper Check or Handling of Exceptional Conditions). This
partial code has been taken from the APPS dataset [25]
where at line 12, the assert is used to enforce the value
of the variable diff is greater than or equal to 0.

1 class Solution:
2 def canConvertString(self, s: str, t: str,
3 k: int) -> bool:
4 if len(s) != len(t):
5 return False
6 shifts = []
7 for ch1, ch2 in zip(s, t):
8 asc1 = ord(ch1) - ord('a')
9 asc2 = ord(ch2) - ord('a')

10 diff = asc2 - asc1 if asc2 >= asc1\
11 else 26 - asc1 + asc2
12 assert diff >= 0
13 if diff > 0:
14 shifts.append(diff)

• Blacklisted Function: Bandit checks the usage of Python
function calls that have possible security implications. Dif-

ferent kinds of blacklisted functions can be found in the
training sets. For example:

1) eval: This Python function is used to evaluate arbitrary
Python expressions from a text or compiled code input.
It can dynamically evaluate Python expressions from any
input, whether a string or a built code object. However,
the problem is that it is considered insecure as it could
execute arbitrary Python code. The safer option for this
function could be ast.literal_eval. This security
smell is associated with CWE-78 (OS Command Injec-
tion).

2) random: Standard pseudo-random generators in Python
could be handy for generating random numbers, but they
are not suitable for cryptography. A cryptographically
secure pseudo-random number generator is a random
number generator that uses synchronization mechanisms
to ensure that no two processes generate the same random
number at the same time [45]. Python’s random function
is not suitable for this purpose. This security smell maps
to CWE-330 (Use of Insufficiently Random Values).

This partial and slightly modified code is taken from the
Code Clippy dataset [26]. In line 4, it uses invokes the
random.randint function, which is a blacklisted func-
tion.
1 ...
2 # perform random check to assert
3 # the probability is valid
4 checkid = random.randint(0,len(resp_length)-1)
5 if resp_length[checkid] < 2:
6 ...

• Subprocess without Shell Equals True: The
subprocess module in Python is used to run a
new application by creating a new process from Python.
When the shell parameter is equals to true, the code
is executed through the system’s shell (e.g., /bin/sh). It
is a good practice to invoke a subprocess without using
a shell to prevent shell injection attacks. However, any
user-provided or variable input without sanitizing has
security implications, even if the shell argument is equal
to false. Hence, Bandit [40] marks a subprocess invocation
without a shell as a smell, as every user-provided input
should be properly validated (but it has lower severity as
compared to invoking it with shell=true). This security
smell is related to CWE-78 (OS Command Injection). The
following (slightly modified) code snippet is collected from
the CodeXGlue dataset [24]. Line 7 has a call for opening
a subprocess without the shell parameter equal to true
but with a potential unsanitized input (project_name).

1 def runserver(project_name):
2 '''
3 Runs a python CGI server in a subprocess.
4 '''
5 ...
6 os.chdir(CGI_FOLDER)
7 subprocess.Popen("python -m\
8 http.server --cgi 8000 --name " + project_name)

C. Implication of the Findings

Bad code patterns can (and will) leak to the output of
models: In RQ1, we observed that code smells occur in
the training datasets. One of the training sets had 97% of
samples with smells in them. When we observed the output
of two code generation tools (GPT-Code-Clippy [27] and
Github Copilot [28]), we found that these smells leaked to
the output of these models. For example, in a configuration,
GPT-Neo [46] model is fine-tuned only with the APPS [25]
dataset and in the output for HumanEval dataset [2] from that
configuration, we observed that the types of code and security
smell are a subset of the types of code and security smell
found in the APPS [25] training set.

Code generated by tools should be taken with a “grain of
salt”: Automated code generation has become very popular,
especially after the release of GitHub Copilot in the last week
of June 2021 as an extension in different text editors and
IDEs. While code generation tools can help developers write
runnable code from a docstring and previous code context,
our study shows that the output of these models is not free
from code smells and, more dangerously, security code smells.
Using the generated code “as is” without properly checking
its quality can introduce quality problems that may persist
throughout the software development. Developers can consider
using static analyzers and/or linters when accepting code
generation suggestions made by these techniques.

Preprocessing of datasets: The training sets for code gener-
ation suffer quality problems. Hence, more research is needed
to investigate and develop preprocessing techniques to remove
and/or repair such quality problems. Automated tools can
quickly fix some smell types, and our study on security smell
in training set by Bandit shows that less than 11% of the
training samples contain all the security smell. Removing them
from the training set could be a way to improve the output
quality of the model.

VII. THREATS TO VALIDITY

The main threat to the construct validity of our work is that our
analysis heavily depends on the accuracy of the tools we used
(i.e., Pylint and Bandit). To mitigate this threat, we employed a
systematic process to manually validate random samples such
that we could determine the confidence level of our results
(as described in Section IV-E). Another threat relates to the
generalizability of the findings of the work (external validity).
We inspected smells across three open-source datasets, which
are written in Python. Thus, the results may not generalize to
code generation techniques for other programming languages.
Furthermore, though the datasets are machine learning model-
independent, we only focused on the output of the fine-
tuned GPT-Neo [46] model and GitHub Copilot [28]. Both of
them are GPT-style [36] models. There are other transformer-
based models for generative task, i.e., CodeBERT [37] and
CodeT5 [38]. Our results may not be generalized for these
models. However, it is important to highlight that this work
did not aim for statistical generalization but rather analytical

generalization; the three datasets were carefully chosen from
various sources. Hence, we anticipate that these datasets will
reflect a typical dataset for training transformer-based code
generation techniques. For the generative models, we only
focused on the output to understand the presence of smells
and checked ten configurations of an open source model along
with a closed source model. A more extensive study can be
conducted to create a correlation between code smell and the
model’s hyperparameters.

Finally, we only consider security smells that map to the CWE
list. We acknowledge that it may not include all possible
security smell types. However, it is important to highlight
that the CWE list is a mature community-established list of
security weaknesses that have been observed and documented
in the real world and have been widely used by the security
community (both in academia and industry).

VIII. RELATED WORK

Prior works have focused on developing an automated gener-
ation of source code that can implement a given task. Most of
these techniques take as input the task described in natural
language with a set of input and output examples. Before
the emerging techniques of the deep learning process, pro-
gram synthesis was formulated as searching for the program
within a defined search space. Gulwani et al. [47] surveyed
the foundation of program synthesis, such as the deductive
synthesis approach [48], [49], in which task specification
is converted into constraints and extracts the program after
proving the constraint satisfaction. Yin et al. [50] employed
recurrent networks to map text to abstract syntax trees and
then code using attention. Large language learning models
have been excellent in generating source code from the given
context. After fine-tuned on large code dataset, a variety of
large language learning models have been released aiming to
generated code (e.g., CodeBert [37], Codex [2], CodeT5 [38]).
AlphaCode [51] is another type of code generation model
that generates code for competitive programming problems.
Codex’s updated version is later used to create an advanced
auto-complete system, GitHub Copilot [28]. Our work focuses
on the code smells in the training sets and their leakage to
the model’s generated output instead of evaluating the perfor-
mance of transformer-based [10] fine-tuned code generation
machine learning models.

Code smells are ongoing quality issues in a project’s main-
tainability, and readability [15]. Manual detection of the smell
is time-consuming and may not scale [52]. Hence, several
works focused on developing techniques to detect code smells
automatically [53]–[55]. Lanza and Marinescu [52] proposed
a metric-based detection strategy to detect code smells. Chen
et al. [56] implemented a code smell detection tool, Pysmell,
which can detect 11 code smells in the Python project. Di
Nucci et al. [57] described machine learning-based experi-
ments with a new dataset configuration that includes instances
of multiple types of smells. Though the authors decided that

using the machine learning model still needs much work, they
proposed that it can be improved.

Other works studied smells related to coding standard vio-
lations. The coding style guide must be followed as it is
directly related to readability. It enforces to follow a certain
style from the naming convention of the variable to the coding
layout [58]. Without a good readable code, it could hamper the
maintainability [59]. To enforce following the coding standard,
automated tools are available that could validate code quality
[60]. For example, Simmons et al. [20] used Pylint [41] to
analyze the coding standard of 1,048 open-source data science
projects. In our work, we used existing detectors to analyze
the persistence of code smells; specifically, security smells
in datasets and the output of transformer-based source code
generations.

With the rise of code generation tools integrated with IDEs,
prior works studied to what extent the generated code is func-
tionally correct (i.e., it implements what the user expected) [2],
[11], [21]. However, these works did not verify the quality of
the generated code. More recent works investigated whether
GitHub Copilot can generate vulnerable code [22] or whether
it is as bad as humans in generating insecure code [23].
Although these works point to potential quality issues in
automatically generated code, we currently lack an in-depth
understanding of the quality of training datasets and whether
code smells can potentially leak into the code generated by
these models. Therefore, our work conducts a systematic large-
scale empirical study on the training sets and outputs of two
transformer-based code generation techniques.

IX. CONCLUSION

Automated code generation can help developers reduce the
time spent writing code with common patterns. In this paper,
we investigated whether the code generated by transformer-
based code generation techniques can introduce code smells.
By performing a large-scale empirical study over training sets,
we found that they contain several smell occurrences, where
undefined variables were the most common ones, and the use
of dangerous functions were the most reoccurring smells. We
also investigated whether the smells from the training set can
leak to the generated code models. We found that both an
open-source (GPT-CC) and a closed-source (GitHub Copilot)
code generation tool generated problematic code. This study
highlights the importance of not accepting generated code as-
is and provides a motivation for further research in techniques
that can generate code that is not only functionally correct but
also would not introduce quality issues.

REFERENCES

[1] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

[2] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto et al.,
“Evaluating large language models trained on code,” 2021.

[3] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-token code
completion by jointly learning from structure and naming sequences,”
in 44th International Conference on Software Engineering (ICSE), 2022.

[4] S. Kim, J. Zhao, Y. Tian, and S. Chandra, “Code prediction by feeding
trees to transformers,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 2021, pp. 150–162.

[5] A. Svyatkovskiy, S. Lee, A. Hadjitofi, M. Riechert, J. V. Franco, and
M. Allamanis, “Fast and memory-efficient neural code completion,” in
2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE, 2021, pp. 329–340.

[6] Y. Gao and C. Lyu, “M2ts: Multi-scale multi-modal approach
based on transformer for source code summarization,” arXiv preprint
arXiv:2203.09707, 2022.

[7] A. V. M. Barone and R. Sennrich, “A parallel corpus of python functions
and documentation strings for automated code documentation and code
generation,” arXiv preprint arXiv:1707.02275, 2017.

[8] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang, “Treegen: A
tree-based transformer architecture for code generation,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, 2020,
pp. 8984–8991.

[9] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020, pp.
1433–1443.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.
[Online]. Available: https://arxiv.org/abs/1706.03762

[11] S. Tipirneni, M. Zhu, and C. K. Reddy, “Structcoder: Structure-
aware transformer for code generation,” 2022. [Online]. Available:
https://arxiv.org/abs/2206.05239

[12] T. Sharma, M. Fragkoulis, and D. Spinellis, “House of cards: code smells
in open-source c# repositories,” in 2017 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM).
IEEE, 2017, pp. 424–429.

[13] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and
A. D. Lucia, “On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation,” Empirical Software
Engineering, vol. 23, no. 3, pp. 1188–1221, 2018.

[14] V. Gudivada, A. Apon, and J. Ding, “Data quality considerations for big
data and machine learning: Going beyond data cleaning and transfor-
mations,” International Journal on Advances in Software, vol. 10, pp.
1–20, 07 2017.

[15] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[16] M. Ghafari, P. Gadient, and O. Nierstrasz, “Security smells in android,”
in 2017 IEEE 17th international working conference on source code
analysis and manipulation (SCAM). IEEE, 2017, pp. 121–130.

[17] M. R. Rahman, A. Rahman, and L. Williams, “Share, but be aware:
Security smells in python gists,” in 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2019, pp. 536–540.

[18] A. Rahman, C. Parnin, and L. Williams, “The Seven Sins: Security
Smells in Infrastructure as Code Scripts,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). Montreal,
QC, Canada: IEEE, May 2019, pp. 164–175. [Online]. Available:
https://ieeexplore.ieee.org/document/8812041/

[19] B. van Oort, L. Cruz, M. Aniche, and A. van Deursen, “The prevalence
of code smells in machine learning projects,” in 2021 IEEE/ACM 1st
Workshop on AI Engineering-Software Engineering for AI (WAIN).
IEEE, 2021, pp. 1–8.

[20] A. J. Simmons, S. Barnett, J. Rivera-Villicana, A. Bajaj, and R. Vasa,
“A large-scale comparative analysis of coding standard conformance in
open-source data science projects,” in Proceedings of the 14th ACM
/ IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). ACM, oct 2020. [Online]. Available:
https://doi.org/10.1145%2F3382494.3410680

[21] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. J. Cai, M. Terry, Q. V. Le, and C. Sutton, “Program synthesis
with large language models,” ArXiv, vol. abs/2108.07732, 2021.

[22] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “Asleep
at the keyboard? assessing the security of github copilot’s code
contributions,” in 2022 2022 IEEE Symposium on Security and Privacy
(SP) (SP). Los Alamitos, CA, USA: IEEE Computer Society, may
2022, pp. 980–994. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/SP46214.2022.00057

[23] O. Asare, M. Nagappan, and N. Asokan, “Is github’s copilot as bad
as humans at introducing vulnerabilities in code?” arXiv preprint
arXiv:2204.04741, 2022.

[24] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy et al., “Codexglue:
A machine learning benchmark dataset for code understanding and
generation,” 2021. [Online]. Available: https://arxiv.org/abs/2102.04664

[25] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo,
C. Burns, S. Puranik, H. He, D. Song, and J. Steinhardt, “Measuring
coding challenge competence with apps,” 2021. [Online]. Available:
https://arxiv.org/abs/2105.09938

[26] N. Coooper, A. Arutiunian, S. Hincapié-Potes, B. Trevett, A. Raja,
E. Hossami, M. Mathur et al., “Code Clippy Data: A large
dataset of code data from Github for research into code language
models,” Oct. 2021. [Online]. Available: https://github.com/CodedotAl/
gpt-code-clippy/wiki/Dataset

[27] ——, “GPT Code Clippy: The Open Source version of GitHub
Copilot,” Jul. 2021. [Online]. Available: https://github.com/CodedotAl/
gpt-code-clippy/wiki

[28] Github copilot : Your ai pair programmer. [Online]. Available:
https://copilot.github.com

[29] M. Fowler, “CodeSmell.” [Online]. Available: https://martinfowler.com/
bliki/CodeSmell.html

[30] J. Pereira dos Reis, F. Brito e Abreu, G. de Figueiredo Carneiro,
and C. Anslow, “Code Smells Detection and Visualization: A
Systematic Literature Review,” Archives of Computational Methods in
Engineering, vol. 29, no. 1, pp. 47–94, Jan. 2022. [Online]. Available:
https://doi.org/10.1007/s11831-021-09566-x

[31] The MITRE Corporation, “CWE - Common Weakness Enumeration,”
2022. [Online]. Available: http://cwe.mitre.org/

[32] “CVE-2010-2073.” [Online]. Available: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2010-2073

[33] N. C. Guido van Rossum, Barry Warsaw, “Pep 8 — the style guide for
python code.” [Online]. Available: https://pep8.org/

[34] I. Sutskever, O. Vinyals, and Q. V. Le, “Se-
quence to sequence learning with neural networks,” 2014.
[Online]. Available: https://proceedings.neurips.cc/paper/2014/file/
a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2018.
[Online]. Available: https://arxiv.org/abs/1810.04805

[36] T. B. Brown, B. Mann, N. Ryder et al., “Language models are few-shot
learners,” 2020. [Online]. Available: https://arxiv.org/abs/2005.14165

[37] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model
for programming and natural languages,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.08155

[38] Y. Wang, W. Wang, S. Joty, and S. C. H. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” 2021. [Online]. Available: https://arxiv.org/abs/2109.00859

[39] OpenAI, “OpenAI,” Jun. 2021. [Online]. Available: https://openai.com

[40] Bandit. [Online]. Available: https://bandit.readthedocs.io/

[41] Pylint. [Online]. Available: https://pylint.pycqa.org/

[42] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“CodeSearchNet challenge: Evaluating the state of semantic code
search,” 2019. [Online]. Available: https://arxiv.org/abs/1909.09436

[43] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster,
J. Phang, H. He, A. Thite, N. Nabeshima et al., “The pile: An
800gb dataset of diverse text for language modeling,” arXiv preprint
arXiv:2101.00027, 2020.

[44] Z. Chen, L. Chen, W. Ma, X. Zhou, Y. Zhou, and B. Xu, “Understand-
ing metric-based detectable smells in python software: A comparative
study,” Information and Software Technology, vol. 94, pp. 14–29, 2018.

[45] C. Dufour, “How to ensure entropy and proper random numbers
generation in virtual machines.” [Online]. Available: https://www.
exoscale.com/syslog/random-numbers-generation-in-virtual-machines/

[46] S. Black, L. Gao, P. Wang, C. Leahy, and S. Biderman, “GPT-Neo:
Large Scale Autoregressive Language Modeling with Mesh-Tensorflow,”
Mar. 2021. [Online]. Available: https://doi.org/10.5281/zenodo.5297715

[47] S. Gulwani, O. Polozov, R. Singh et al., “Program synthesis,” Foun-
dations and Trends® in Programming Languages, vol. 4, no. 1-2, pp.
1–119, 2017.

[48] C. Green, “Application of theorem proving to problem solving,” in
Proceedings of the 1st International Joint Conference on Artificial In-
telligence, ser. IJCAI’69. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1969, p. 219–239.

[49] Z. Manna and R. J. Waldinger, “Toward automatic program synthesis,”
Commun. ACM, vol. 14, no. 3, p. 151–165, mar 1971. [Online].
Available: https://doi.org/10.1145/362566.362568

[50] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” 2017. [Online]. Available: https://arxiv.org/abs/1704.
01696

[51] Y. Li, D. H. Choi, J. Chung, N. Kushman, J. Schrittwieser et al.,
“Competition-level code generation with alphacode,” ArXiv, vol.
abs/2203.07814, 2022.

[52] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media, 2007.

[53] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
“A cooperative parallel search-based software engineering approach for
code-smells detection,” IEEE Transactions on Software Engineering,
vol. 40, no. 9, pp. 841–861, 2014.

[54] T. Paiva, A. Damasceno, E. Figueiredo, and C. Sant’Anna, “On the
evaluation of code smells and detection tools,” Journal of Software
Engineering Research and Development, vol. 5, no. 1, pp. 1–28, 2017.

[55] F. L. Caram, B. R. D. O. Rodrigues, A. S. Campanelli, and F. S.
Parreiras, “Machine learning techniques for code smells detection: a sys-
tematic mapping study,” International Journal of Software Engineering
and Knowledge Engineering, vol. 29, no. 02, pp. 285–316, 2019.

[56] Z. Chen, L. Chen, W. Ma, and B. Xu, “Detecting code smells in python
programs,” in 2016 International Conference on Software Analysis,
Testing and Evolution (SATE), 2016, pp. 18–23.

[57] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lu-
cia, “Detecting code smells using machine learning techniques: Are we
there yet?” in 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2018, pp. 612–621.

[58] T. Lee, J. B. Lee, and H. P. In, “A study of different coding styles
affecting code readability,” 2013.

[59] M. Elish and J. Offutt, “The adherence of open source java programmers
to standard coding practices,” 01 2002.

[60] S. Dasgupta and S. Hooshangi, “Code quality: Examining the efficacy
of automated tools,” 2017.

