BUDGET: a Tool for Supporting Software
Architecture Traceability Research

Joanna C. S. Santos, Mehdi Mirakhorli, Ibrahim Mujhid and Waleed Zogaan
Software Engineering Department
Rochester Institute of Technology
Rochester, NY, USA
{jds5109, mxmvse, ijm9654, waz7355} @rit.edu

Abstract—Automated traceability techniques based on super-
vised machine learning algorithms can significantly reduce the
cost and effort needed to create and maintain traceability links
between requirements, architecture and source code. However,
the upfront cost to train these algorithms is the main bottleneck
for expanding, and validating these traceability techniques as well
as applying them to complex industrial systems. In this tool demo,
we present our web-based tool named BUDGET, as a solution
to automate creation of training data for the problem of tracing
architectural concerns. BUDGET uses Automated Web-Mining,
and Big-Data Analysis techniques to generate training data for
supervised architecture-traceability techniques. It uses several
sampling strategies and mines ultra-large scale code repositories
to generate datasets of tactical code snippets. The BUDGET falls
in the research tool category and supports researchers in the
area of software architecture and requirements engineering.

I. INTRODUCTION

Automated traceability techniques are more increasingly
being used by the industry to support developers during
software engineering activities, such as compliance checking,
verification and validation, acceptance testing and architec-
tural analysis. The automated traceability techniques utilize
advanced data mining methods, to automatically trace and
connect different software artifacts which are conceptually
similar. For example, a developer in healthcare domain can
use these techniques to identify which parts of the system
satisfy the regulatory codes defined by HIPAA [/1] and which
parts do not. Another user can use traceability techniques
to trace quality attributes such as performance, reliability
and availability into architectural tactics/patterns [2] used to
implement them and the realization of these tactics/patterns in
the source code.

The current state of traceability research relies on super-
vised or unsupervised techniques for developing tools to trace
different types of artifacts. For example, supervised learning
algorithms are used for tracing requirements, design decisions
or coding concepts that “reoccur” across many systems [3]],
[6]. Unsupervised learning techniques, such as Vector Space
Model (VSM) [8]], have been also shown useful for tracing
ad-hoc requirements, or in situations where it is difficult to
collect sample reoccurring concepts in software artifacts of
several systems.

An example of a supervised traceability technique is a clas-
sification algorithm [6], [7] we previously developed to detect

and trace architectural choices known as factics in the source
code of a software system. Tactics are the building blocks of a
software architecture and are used to satisfy a specific quality
attribute [2]. For example, the heartbeat tactic can be used
to satisfy an availability concern, while the audit trail can be
used for satisfying security requirements. Our supervised tactic
traceability technique was able to detect several architectural
tactics such as heartbeat, scheduling, authentication, audit
trail and thread pooling in source code. This approach was
widely used by the traceability community to trace quality
requirements through architectural tactics to the source code,
perform change impact analysis at the architecture level and
prevent architectural issues, such as drift and degradation.

The tactic classifier [5], [[6] was trained using manually
collected code snippets of architectural tactics from 10 open
source projects. Even though the results were promising, we
observed that the main challenge in extending this approach
to a wider range of architectural tactics is the need to perform
an extensive work of collecting and peer-reviewing training
samples. This is a challenge that imposes limitations in apply-
ing the technique in an industrial setting. Furthermore, such
limitation has prevented traceability researchers from actively
extending the current tactic traceability research, or conduct
comparative empirical studies in this area.

Problem: Implementation samples of architectural tactics/-
patterns can significantly support research in the areas of soft-
ware architecture. Such datasets will help researchers reason
about tactic implementations, discover patterns within these
implementations, formulate new design flaws as they relate to
tactics/patterns and also develop novel code based architecture
analysis techniques. However, creating such datasets requires
months of manual effort.

Solution: In this demo paper, we developed BUDGET
(Bigdata aUgmented Dataset GEnerator Tool), an on-line tool
for automatically generating tactic-related training sets for
researchers. BUDGET uses the description of tactics in the
text books and queries online technical libraries (e.g. MSDN)
or an internet-scale software repository to collect several
implementation and documentation of the tactics. BUDGET’s
underlying search algorithms utilize advanced indexing and
performance optimization techniques to query more than 22
million source files of our repository within few seconds. In
particular, the current version of the BUDGET is designed

to reduce the upfront costs associated with creating training
sets for supervised and semi-unsupervised software traceability
approaches. BUDGET is delivered as an online tooﬂ

II. OVERVIEW

BUDGET tool provides several features to support our goal
of dataset generation. Examples of such key features are:
e An internet-scale source code repository of open source
systems retrieved from GitHub, SourceForge, Apache and
Google Code. This repository is used as the knowledge base
to extract sample implementation of the tactics.
e An automated Web-mining engine to generate datasets of
tactics implementations/specifications through mining techni-
cal programming libraries such as MSDN. This engine uses
Google Search API (Application Programming Interface) to
find web pages discussing frameworks and technical specifi-
cations of each tactic.
e An Automated Big-data analysis engine which generates
datasets of tactical code snippets through mining our ultra
large-scale repository of open source systems. BUDGET uti-
lizes massive replication and indexing to improve the response
time of this process.
e Different data-sampling strategies. BUDGET implements
both stratified and random sampling techniques. This enables
the researchers to either target specific projects or downsample
the repository according to their needs. It also provides fea-
tures to specify the size and balanced/unbalanced properties
of the requested datasets.
e project filtering features to obtain the datasets from a set
of repositories, or in a specific programming language.

Figure [I] shows the architecture of the BUDGET and its
constituent elements. The envisioned stakeholders, the detailed
features, and examples of architectural tactics supported by the
BUDGET are discussed in the following subsections.

A. Stakeholders

The targeted users of the BUDGET tool are researchers in
the area of software system traceability. However, it can be
used by researchers in other areas of software engineering
such as mining software repositories, software architecture
and program analysis. Furthermore, students and educators can
use this online tool to retrieve samples of architectural tactics
implemented in several open source projects.

B. Web-Mining Approach

Web-based libraries contain a rich knowledge base related to
software development, such as API documentations, tutorials,
sample code, design concerns and so forth. Web content has
previously been used by researchers to generate or augment re-
search datasets [4]]. In our paper, we use Web-mining approach
to automatically generate a dataset of technical discussions
about an architectural tactic. Studies have shown that such
datasets are useful in developing and training feature detection
techniques [5]], [[7]. Our approach uses the public knowledge

Thttp://design.se.rit.edu/budget/

in the technical libraries to generate high quality training sets
for a supervised tactic traceability technique.

To do so, the Web Mining Agent (Fig. [I) uses the Google
Search API and queries technical libraries using a predefined
set of tactic-related terms. These terms were collected from
the explanations of tactics within textbooks.

For instance, for Heartbeat we extracted the following
keywords from its description: “Heartbeat is a fault
detection mechanism that employs a periodic message
exchange between a system monitor and a process
being monitored” [2]. Then, to perform the search
targeting a specific technical library (e.g MSDN), we
construct the following search query: Heartbeat OR
fault OR detection OR monitoring site:
https://msdn.microsoft.com/en-us/library.
This search query is forwarded to the Google Search API
which performs a search over all Web pages within the MSDN
library. Previous work [7|] shows that textual description of
tactics will form good search queries and can result in high
quality results.

After retrieving the results, Web Mining Agent ranks the
web-pages returned in the search based on relevance to a
tactic. The positive samples are the web-pages with the highest
similarity to a tactic, and negative samples are the pages with
the similarity score of zero. For each retrieved web-page, the
agent removes the HTML (HyperText Markup Language) tags
and saves the results in a plain text file. This way, only the
textual content of the web-pages are saved. In case of negative
samples, the search query is modified to return only those
web-pages that does not contain any of the tactical-related
terms. These negative samples helps a supervised technique
to remove dominant words in the web-pages of the library
(e.g. the word “Microsoft” in MSDN library) [5].

C. Big-Data Analysis Approach

While the web-mining approach extracts the API specifica-
tions of the tactics from technical libraries, the Big-data anal-
ysis approach retrieves the actual sample code snippets from
open source systems. In order to support generation of tactic-
datasets which are diverse, cover several application domains
and programming languages, BUDGET utilizes a massively
large code base repository. This code repository contains over
116,609 projects from GitHub, Google Code, SourceForge,
Apache, and other software repositories. BUDGET has dif-
ferent code crawling applications to extract projects from all
these different code repositories. To extract the projects from
Github, it uses a torrent system known as GHTorrent that acts
as a service to extract data and events.

BUDGET also utilized Sourcerer, an automated crawl-
ing, parsing, and fingerprinting application developed by re-
searchers at the University of California, Irvine [9]). It was used
to extract projects from publicly available open source reposi-
tories such as Apache, Java.net, Google Code and Sourceforge.
After projects extraction from these repositories, we performed
a data cleaning in which we removed all the empty or very
small projects.

http://docs.oracle.com
http://docs.python.org

S o == Web-Miner V/”“ Tactic Query Terms
| —

Tactical
(positive)

http://msdn.microsoft.com/

_____ >

Google Search API | 777777 >‘

Web Mining
Agent

~ ppache
‘s Foundatrlqon
software FOUNT %)

‘_H Code Crawler ‘

|_|| Code Crawler | 1

,,,,,, ,)‘
Indexer

Big-Data Analyzer

22 Million Source Files

Source Code

Term-Documents Indexes (TF/DF/IDF)

Tactic Query Terms
from Textbooks Tactical
(positive)

Data Generator ||~ >

Parallelized Vector
Space Model
| Running on Indexes -

______ ——)@
l: ______ > [== | Non-Tactical
- | (negative)

Non-Tactical
(negative)

yE

Fig. 1. Overview of BUDGET’s data generation process.

Given the high amount of data being stored, we replicated
all the indexing and searching processes. Several document in-
dexing techniques were used to guarantee faster response time
when searching for tactic-related code snippets. To perform
the indexing, we preprocessed each source code by removing
stop words and stemming the terms into their root form. Then
we created an index that for each source file it stores: term
frequency (TF), document frequency (DF), TF/IDFE| value and
the location of source file. This is an inverted index in which
we can obtain a list of documents that contain a specific term.

The Data Generator component implements a paralleled
version of Vector Space Model (VSM) [8]] capable of running
over 22 million source files in a few seconds. The VSM is
a standard approach which computes the cosine similarity
between a query and a document, each of which is represented
as a vector of weighted terms. A more complete explanation is
provided in most introductory information retrieval textbooks
[8]]. This component is used to generate a tactical dataset based
on the search query extracted from text books. It calculates the
cosine similarity score between provided query and all source
files in our code repository.

For each tactic, the most relevant source files exhibiting
highest similarity to the trace query are selected. For generat-
ing negative samples, this component also retrieves n samples
of non-tactical files for each tactic from the same project (n
is defined by the user). Previously it has been proven that
unrelated sample data has significant impact on the accuracy of
a classifier trained by both positive and negative samples [5]].

D. User Interfaces (Uls) and Features

BUDGET user interfaces are shown in Figure 2} The initial
UI on the web portal of BUDGET (Figure 2(a)) enables a
user to specify the properties of the dataset and select an
approach to generate the data. These properties are specified
through configuration parameters of the tool. As shown in
sub-figure 2(a)] the parameters that shall be specified by the
user before generating datasets are: the architectural tactic,
the dataset size and the approach (Web Mining or Big-data
analysis). Besides these parameters, BUDGET has additional
ones specific to the data generation approach selected by the

2IDF:inverse document frequency

user. These further parameters provide flexibility to the user
to adjust the generated data according to their research needs.

When using Web Mining technique, the user can also
specify which Web sites to search for tactic-related content
(Figure 2(c)). The default value of this parameter is a list
of links that encompasses the MSDN, Oracle and the Python
documentation.

In case of using Big-Data Analysis, BUDGET provides
parameters for indicating the programming languages of the
generated samples and a sampling strategy (Figure 2(b))
which defines the way the tool inspects the tactic-related
code snippets from our ultra-large scale local repository. The
three possible sampling strategies are Best Cases, Random
Sampling and Stratified Sampling. Further description of these
techniques can be found on the demo page.

After selecting the sampling strategy, the sampled tactical
files are sorted based on the similarity score to the tactic
query. Subsequently, the tool generates the N positive and M
negative samples defined by the user. For that, the tool selects
the N most similar tactical files and the M least related files
for generating the positive and negative samples, respectively.
Currently, BUDGET supports the generation of a dataset with
up to 1000 positive/negative samples. Besides using the default
text book terms in the Big-Data Analysis and Web Mining
approaches, the tool has the flexibility of using user-defined
terms to generate datasets. For that, the user selects “Other”
as a tactic of interest and provide at least three terms as a list
of keywords separated by commas.

The datasets generated by BUDGET are available as com-
pressed file in ZIP format which can be downloaded. This ZIP
file will organize the samples in different directories based on
the sample type (positive or negative) and the source of the

sample (see Figure 2(d)).
E. Tactics Supported by BUDGET

Current version of BUDGET has hard-coded queries for
ten tactics such as heartbeat, ping-echo scheduling, resource

pooling, checkpointing, kerberos. The user can add a search
query for any additional tactic.

III. EVALUATION

The accuracy of the datasets generated by BUDGET was
evaluated by two members of our team. We generated a

Mining-Technical Libraries - Tactic * Audit M

i ® Balanced
Big-Data Analysis - Sampling option
Unbalanced

Sampling Size * 10

(a) BUDGETs initial page with the generic dataset generation parameters.

Big Data M
L
Language * \}.’6‘5& :\;Lg%
All () \B“%g%“\ Javascript (.js)
CIC++ (.c,.cc,.cpp,.h) PHP (.php)
Ci (.cs) Pythen (.py)
Java (.Java) Aspectd (.a])
Jep (.Jjep) Java Server Pages (.jsp)
Ruby (.rb) Scala (.scaml,.scala,.ssp)
Perl (.pm,.pl) Groovy (.groovy)

Sampling strategy *

s amp‘l\ﬂ‘}
Stra’%;}%‘}mg‘\ars

Best cases ¥

Repositories (optional)

Filtering repositories

(b) Generating data using big-data analysis approach.

al
. o fpeinicd
n
Web Mining Q“pm“{m?arleﬁ
Web libraries *
https://msdn microsoft. com/en-us/library
http-//docs.oracle.com

http:/docs.pyvthon.org
(c) Mining technical programming libraries.
Generated Dataset-Heartbeat

. Code Snippets Dataset
Megatives (Mon-Tactical Samples)

B‘?nerated

atasets

Positives (Tactical Samples)
Web-Pages Dataset

Megatives (Non-Tactical Samples)

Positives (Tactical Samples)

(d) Generated dataset by BUDGET.

Fig. 2. Snapshot of BUDGET Uls

balanced dataset (size equals to 10) using both Web-mining
and Big-data analysis approaches. In case of Big-data analysis
approach, we used the best-case sampling strategy and source
files in any programming languages were included in the
sampling

The percentage of correctly generated data points for each
tactical dataset is reported in the Table[l] The Big-data analysis
approach relatively results more accurate datasets. The auto-
mated support reduces the manual effort for obtaining such

dataset. Even in case of the manual vetting of the automatically
generated dataset, the total effort will be significantly less
that purely manual approach. For instance, it took us about
3 months to collect and peer review tactical data from 10
different projects for 5 architectural tactics.

TABLE I
QUALITY OF AUTOMATICALLY GENERATED TRAINING-SET
Tactic Web-Mining Big-data
Audit 60% 100 %
Scheduling 100% 100 %
Authentication 91% 100 %
Heartbeat 60% 90%
Pooling 80% 90%

IV. CONCLUSION

BUDGET enables the traceability researchers to mine soft-
ware repositories of 22 million source codes to create training
sets. Since BUDGET is accessible for the public, it would
enable the researchers in the community to conduct similar
experiments, reproduce the results and expand their work.
Based on our assessment, the tool achieved an average ac-
curacy of 90% and above for the best-case sampling strategy.
Certainly this level of accuracy can provide the researchers
with an initial dataset with a good quality. Further manual
vetting can enhance the dataset. The cost of automated dataset
generation followed by a manual vetting is significantly less
than a purely manual approach which typically takes weeks
to months to create datasets. In future work we aim to extend
the BUDGET tool and generate different sets of traceability
artifacts.

V. ACKNOWLEDGEMENT

The work in this paper was partially funded by the US National
Science Foundation grant #CCF-1543176.

REFERENCES

[1] The Health Insurance Portability and Accountability Act of 1996
(HIPAA), 1996.

[2] F. Bachmann, L. Bass, and M. Klein. Deriving architectural tactics:
A step toward methodical architectural design. Technical report, DTIC
Document, 2003.

[3] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker. A
machine learning approach for tracing regulatory codes to product specific
requirements. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages 155-164. ACM,
2010.

[4] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker. A
machine learning approach for tracing regulatory codes to product specific
requirements. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,
South Africa, 1-8 May 2010, pages 155-164, 2010.

[5] J. C.-H. Mehdi Mirakhorli. Detecting, tracing, and monitoring architec-
tural tactics in code. IEEE Trans. Software Eng., 2015.

[6] M. Mirakhorli, A. Fakhry, A. Grechko, M. Wieloch, and J. Cleland-
Huang. Archie: a tool for detecting, monitoring, and preserving archi-
tecturally significant code. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
739-742. ACM, 2014.

[7]1 M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar. A tactic centric
approach for automating traceability of quality concerns. In International
Conference on Software Engineering, ICSE (1), 2012.

[8] G. Salton. Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1989.

[9] 1. University of California. The sourcerer project. sourcerer.ics.uci.edu.

	Introduction
	Overview
	Stakeholders
	Web-Mining Approach
	Big-Data Analysis Approach
	User Interfaces (UIs) and Features
	Tactics Supported by BUDGET

	Evaluation
	Conclusion
	Acknowledgement
	References
	Appendix

